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Abstract. This paper is concerned with various issues related to inference in large dynamic

panel data models (where both n and T increase without bound) in the presence of, possibly,

strong cross-sectional dependence. Our first aim is to provide a Central Limit Theorem for esti-

mators of the slope parameters of the model under mild conditions. To that end, we extend and

modify existing results available in the literature. Our second aim is to study two, although sim-

ilar, tests for breaks/homogeneity in the time dimension. The first test is based on the CUSUM

principle; whereas the second test is based on a Hausman-Durbin-Wu approach. Some of the

key features of the tests are that they have nontrivial power when the number of individuals, for

which the slope parameters may differ, is a “negligible” fraction or when the break happens to

be towards the end of the sample. Due to the fact that the asymptotic distribution of the tests

may not provide a good approximation for their finite sample distribution, we describe a simple

bootstrap algorithm to obtain (asymptotic) valid critical values for our statistics. An important

and surprising feature of the bootstrap is that there is no need to know the underlying model of

the cross-sectional dependence, and hence the bootstrap does not require to select any bandwidth

parameter for its implementation, as is the case with moving block bootstrap methods which may

not be valid with cross-sectional dependence and may depend on the particular ordering of the

individuals. Finally, we present a Monte-Carlo simulation analysis to shed some light on the small

sample behaviour of the tests and their bootstrap analogues.
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1. INTRODUCTION

Nowadays it is widely recognized that economic agents are interrelated due to common factors,

contagion, spillovers and so on. This dependence has been systematically neglected until quite

recently in econometrics, possibly, due to a lack of a clear framework to characterize such a depen-

dence which is exacerbated by the fact that, contrary to time series data, there is an absence of a

clear or natural ordering of the data. In response to this, in the last decade or so, a huge amount
1
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of work has been directed to the study of cross-sectional dependence and several approaches or

models have been put forward.

One way to model the cross-sectional dependence among individuals is by using a common (un-

observed) factor models as in Andrews (2005), Pesaran (2006) or Bai (2009). A second approach

is based on the “distance”of individuals located on a regular pattern in the plane, or lattice. It

recognizes that data may be collected on a regular lattice as a consequence of planned experi-

ments or a result of a systematic sampling scheme. Applications which use this type of data cover

various areas like environmental, urban, agricultural economics as well as economic geography

among others. Early examples of this are the celebrated papers by Mercer and Hall (1911) on

wheat crop yield data and Batchelor and Reed (1924) on fruit trees, that were further analyzed

by Whittle (1954). Other examples are given in Cressie and Huang (1998) and Fernández-Casal

et al. (2003). Examples of lattice models in environment economics include Mitchell et al. (2005),

who study the effect of CO2 on crops, and Genton and Koul (2008), who analyze the effect of

pollutants transported by winds on the yield of barley in UK.

A third approach to explain or model cross-sectional dependence is through the introduction

of measures related to economic and/or geographical distance. This approach was advocated by

Conley (1999) and followed by Chen and Conley (2001). The benefit of this approach, similar

to lattice models, is that the statistical behaviour is reminiscent of that in standard time series

analysis. Another approach that has received a lot of attention is the so-called SAR model,

where the dependence is modelled as a linear transformation of “n” (sample size) independent

and identically distributed (iid) random variables. This approach, considered as a variant of the

model considered in Whittle (1954), was advocated in the geographic-economic literature by Cliff

and Ord (1981) and it has been extensively employed in the econometric literature, see for instance

Lee (2004) and Kelejian and Prucha (2007) among many others. One of the main difference with

lattice data is that, contrary to the latter approach, we cannot consider the data/individuals as

being collected in a systematic fashion. It is precisely this difference which makes the estimation

and study of its properties more diffi cult and challenging.

In this paper, we characterize the cross-sectional dependence of, say the sequence {ui}i∈N,
through a model of the form ui =

∑∞
j=0 aj (i) εj , where {εj}j∈N are iid random variables. This

approach was also considered by Robinson (2011) and Lee and Robinson (2013) and it has a strong

resemblance with the well known Wold decomposition for time series sequences. Our motivation

for using this approach is that it enables us to generate more general dependence structures

than the SAR models can generate, in particular it permits dependence structures with “strong-

dependence”or “long-memory”, see our Definition 1 below. With this view, the SAR model can

be considered as a particular scenario to the approach followed in this paper as we explain further

in Section 2.

Let us introduce what we understand by “strong-dependence”.

Definition 1. The generic sequences {νit}t∈Z, i ∈ N+ are “ strong-dependent” if the sequence

1

n

n∑
i,j=1

|ϕν (i, j)|
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is not bounded in n, where we denote

ϕν (i, j) = Cov (νit, νjt) . (1.1)

Our Definition 1 draws a lot of similarities with one of the characterizations often employed to

describe “long-memory”dependence for a time series sequence {qt}t∈Z. That is, where {qt}t∈Z
exhibits the property of “long-memory”if 1

T

∑T
t,s=1 |Cov (qt, qs)| is not bounded in T , the sample

size. A similar definition for cross-sectional “weak-dependence”was used in Sarafidis and Wans-

beek (2010). While Chudik, Pesaran and Tosetti (2011) also consider the presence of strong- and

weak-dependence in large panels, they describe the dependence using a factor model, whereas ours

is closer related to that given for time series sequences or SAR models. Finally observe that our

definition of “strong-dependence”does not involve or require any ordering of the observations or

the definition of some economic/geographical metric across observations.

This paper is therefore concerned with inference in (linear) dynamic panel data models exhibit-

ing, possibly, strong cross-sectional dependence when both the number of cross-section units and

time increase to infinity. Our dynamic panel data model is

yit = αt + ηi +

k1∑
`=1

ρt`yi(t−`) + θ′tzit + uit, i = 1, ..., n, t = 1, ..., T , (1.2)

where θt is a k2 × 1 vector of unknown parameters, {zit}t∈Z is a vector of exogenous covariates
and {uit}t∈Z is the sequence of error terms, i ∈ N+. As usual αt and ηi represent respectively

the time and individual fixed effects. We shall assume that the sequences {zit}t∈Z, i ∈ N+, are

mutually independent of the error term {uit}t∈Z, i ∈ N+, although not necessarily independent

from the fixed effects αt or ηi. More specific conditions on the sequences {uit}t∈Z and exogenous
variables {zit}t∈Z, i ∈ N+, will be given in Conditions C1 and C2 respectively in Section 2 below.

One of our main interest in the paper is to incorporate this cross-sectional dependence structure

to further enhance the already extensive literature on (dynamic) panel data models. With this

view, the main objectives in this paper are twofold. The first goal is to discuss and examine

the asymptotic properties, and provide a new Central Limit Theorem, of estimators of the slope

parameters of (1.2) when the cross-sectional dependence of the error sequences {uit}t∈Z and
covariates {zit}t∈Z, i ∈ N+, are (possibly) “strong-dependent”. In particular, we provide very

mild and general conditions to guarantee that the estimators of the parameters of the model

are asymptotically normal. Our Central Limit Theorem results extend substantially the work

by Kapoora, Kelejian and Prucha (2007), Yu, DeJong and Lee (2008) or Lee and Yu (2010)

among others, as we allow for more general cross-sectional dependence structures that permits

“strong-dependence”. However to do so, we need to extend a Central Limit Theorem provided in

Phillips and Moon (1999) to allow both for time and cross-sectional dependence. In their work,

the sequences of random variables, say {ψit}t∈Z, i ∈ N, are assumed to be such that {ψit}t∈Z and{
ψjt
}
t∈Z are independent, which is a condition ruled out in our scenario. Unlike Phillips and Moon

(1999), see also Hahn and Kürsteiner (2001), we cannot view the sequences as being independent

in one of its dimensions. In addition, as we allow for “strong-dependence”, we cannot use results

and arguments based on any type of “strong-mixing”arguments, so that results in Jenish and
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Prucha (2009, 2012) cannot be used in our framework either. On the other hand, similar to what

happens with time series regression models, see Robinson and Hidalgo (1997), we do need to

restrict the strength of the cross-sectional dependence to guarantee that our estimator of the

slope parameters converge in distribution with the standard root-nT rate and, more importantly,

that they are asymptotically normal, see also Hidalgo (2003). As the work by Robinson and

Hidalgo (1997) suggests, we might, of course, relax the strength of dependence at the expense of

further complication in the mathematical apparatus by using some type of “weighted”fixed effect

estimator. See our discussion of the conditions in the next section for further details and insights.

Our second main goal in this paper is to examine tests for breaks or homogeneity of the slope

parameters in the model (1.2). Although similar models as the one in (1.2) have been considered,

their interest has focussed on detecting the presence of heterogeneity across the cross-section units,

that is the interest is on whether the slope parameters are the same for all i ≥ 1. See for instance

Pesaran and Smith (1995) or Pesaran and Yamagata (2008) whose framework and ours mainly

differ in that our conditions are somehow milder than theirs and we allow for very general type of

cross-sectional dependence that may exhibit some type of “long-memory”behaviour. Specifically,

denoting in what follows βt =
(
{ρt`}k1`=1 ; θ′t

)′
, we are interested in the null hypothesis

H0 : βt = β for all [Tε] ≤ t ≤ T − [Tε] , (1.3)

where 0 ≤ ε ≤ 1
2 , with the alternative hypothesis being the negation of the null.

Alternatively, drawing notation and arguments from the time series literature, since our panel

model (1.2) can be written as

yit = ηi + αt + β′xit + δ′xitI (t > t0) + uit, i = 1, ..., n, t = 1, ..., T ,

where in what follows we shall abbreviate
(
{yi,t−`}k1`=1 ; z′it

)′
by xit, we might write our hypothesis

testing as

H0 : δ = 0 for all [Tε] ≤ t0 ≤ T − [Tε] ,

where 0 ≤ ε ≤ 1/2 against the alternative hypothesis

H1 : ∃ [Tε] ≤ t0 ≤ T − [Tε] , δ 6= 0.

In this respect, we can view our work as an extension of the relatively scarce work of breaks in the

context of multivariate equations. See nevertheless the work by Bai, Lumsdaine and Stock (1998)

for multivariate models and Bai (2000) on VAR models; see also Qu and Perron (2007). While

their framework is for a fixed, and thus finite, n, in this paper we are concerned with a setup

which allows “n”to increase with no limit as well. So, we can regard our hypothesis testing as

one for structural breaks when the number of sequences, say i = 1, ..., n, increases with no limit.

Hence we are in a framework of testing for many, possibly thousands, hypotheses simultaneously,

see for instance Fan, Hall and Yao (2007). The testing for breaks has also some resemblance to

the problem of testing whether a function or curve is constant, with the function of interest being

βt = β (t/T ) and we want to test H0 : β (τ) = β for all τ ∈ [0, 1] . See also the work by Juhl and

Xiao (2013) for the latter interpretation of the test.
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We now make some general comments about our hypothesis testing. Although we explicitly

consider the scenario of abrupt “breaks” when testing our hypothesis in (1.3), our tests also

have nontrivial power when the change is gradual, that is when under the (local) alternative the

slope parameters βt move to their new regime as a continuous function in t; see our discussion in

Section 3.3 below. A second point to mention is that implicitly we are assuming that the break,

if there were any, would be an interior point of a compact subset of [0, 1] ; the introduction of

weight functions (or normalizations as in Andrews (1993)) discussed in Section 2 below, effectively

guarantees the latter (see also our more explicit comments after Theorem 2 and Corollary 1

below). It might then be of interest to see what would happen with the behaviour of the test

when we allow the break to happen towards the end of the sample, namely T −m0 ≤ t0, where

m0 can be a finite positive constant. Recall that in typical situations, we take ε = .05 or .10,

so that we leave 10% or 20% of the data out. However this choice is no more than arbitrary

and the power of the test may depend on its choice. The technical aspects of such a case are

completely different as one can observe from recent work by Hidalgo and Seo (2013). In fact,

for the latter scenario, it is apparent that one would need strong approximation results for an

increasing dimensional vector of partial sums of random variables in our setting. Although some

preliminary ideas and results might be drawn from the recent work in Chernozhukov et al. (2013),

they are unfortunately not immediately useful for the purpose of testing for breaks towards the

end of the sample and more importantly their work need to be extended when the assumption

of independence is dropped. This situation is beyond the scope of this manuscript. Nevertheless,

we do pay particular attention to the type of alternative models that our tests are able to detect

and more specifically their behaviour under local alternatives. Scenarios that raise very naturally

in our context: (i) the consequences when the time of the break is towards the end of the sample,

that is the break time k0 satisfies k0 > T − [hT ], where [hT ] may satisfy [hT ] = o (T ) ; (ii) the

consequences when the number of sequences/individuals for which a break exists is negligible

when compared to the number of individuals in the sample; and (iii) the consequences when the

breaks are at different times for different individuals or a combination of all of them. Of course

one can imagine a combination of all three scenarios. We shall discuss some issues regarding the

consistency of our tests in scenarios (i) and (ii).

Finally the paper describes a bootstrap approach for our estimators and tests. The motivation

for this comes from the fact that the Monte-Carlo simulation experiment suggests that critical

values drawn from the asymptotic distribution do not provide a good approximation to the finite

sample behaviour of the test. One main reason for this originates from our general/mild conditions

on the cross-sectional dependence which may result in a poor “nonparametric”estimator of the

covariance structure of our statistics. In such a situation bootstrap techniques may be employed in

the hope to improve the finite sample behaviour. To that end, we shall describe and examine two

very simple bootstrap algorithms with have the appealing feature that there is no need to provide

any estimate of the covariance structure of the error term. As a consequence, the bootstrap

algorithms avoid the rather unpleasant need of time series inspired bootstrap methods which

depend on (or make use of) some type of some “ad hoc”distance among the errors (observations),
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and hence there is no need to choose any bandwidth parameter, as is the case with time series,

to implement a valid bootstrap approach. One of our findings is that the size of our tests is not

affected by the choice of ε (trimming).

The remainder of the paper is organized as follows. In the next section, we discuss the regularity

conditions of our model and provide a Central Limit Theorem for the slope parameters of the

model (1.2) given either heterogeneity or homogeneity of the slope parameters. Section 3 discusses

our test procedures for the null hypothesis of homogeneity. A whole broad family of tests are

provided that make use of a weighting function w (τ), where typical choices are w (τ) = 1 and

w (τ) = τ1/2 (1− τ)1/2. We discuss local alternatives and consistency of our tests, showing that our

tests have nontrivial power for sequences converging to zero faster than elsewhere, see Pesaran and

Yamagata (2008). Their tests therefore have zero asymptotic relative effi ciency when compared to

ours. Section 4 discusses a bootstrap approach to our tests in view of the fact that the asymptotic

distribution sometimes might provide a poor approximation to the finite sample critical values. A

second motivation for the use of the bootstrap is that in model (1.2), say, the covariance structure

can be quite complicated, so that bootstrap algorithms may be the only suitable solution to even

compute valid critical values for the test. Section 5 presents a Monte Carlo simulation experiment

to shed some light on the finite sample performance of our tests and the behaviour of the bootstrap

counterpart. Section 6 gives a summary and describe possible extension of our results in several

directions of interest. Finally, the proofs of our main results are provided in the Appendix.

2. REGULARITY CONDITIONS AND ASYMPTOTIC PROPERTIES OF THE
SLOPE PARAMETER ESTIMATORS

Before we discuss and describe the statistical properties for estimators of the parameters βt
in (1.2), we first introduce a set of regularity conditions on the model and discuss the statistical

properties of the covariates and error term. We assume that, for all t ≥ 1, all the roots of the

polynomials
∣∣∣1−∑k1

`=1 ρt`L
`
∣∣∣ = 0 are outside the unit interval, so we are not considering panel

data models with possible unit roots under either the null or the alternative hypothesis as in

Phillips and Moon (1999) or Im, Pesaran and Shin (2003).
Our regularity conditions are given next.

C1: {uit = σivit}t∈Z, i ∈ N+, are zero mean sequences of random variables, where 0 <

σ−1 < σi < σ <∞ and the sequences {vit}t∈Z, i ∈ N+, satisfy

(i) E (vit | Vi,t−1) = 0; E
(
v2
it | Vi,t−1

)
= 1 and finite fourth moments, with Vi,t denoting

the σ−algebra generated by {vis, s ≤ t}.
(ii) For all t ∈ Z,

vit =

∞∑
`=1

a` (i) ε`t,
∞∑
`=1

|a` (i)|2 <∞,
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where {ε`t}t∈Z, ` ∈ N+, are zero mean independent identically distributed (iid) random

variables with finite fourth moments. The weights {a` (i)}ni=1 satisfy

sup
`≥1

n∑
i=1

|a` (i)|2 <∞. (2.1)

C2: {zit}t∈Z, i ∈ N+, are sequences of random variables such that:

(i) zit = µt +
∞∑
k=0

ck (i)χi,t−k,
∞∑
k=0

ckk
1/2 <∞,

where, denoting by ‖B‖ the norm of the matrix B, ck = maxi≥1 ‖ck (i)‖ and E (χit | Υi,t−1) =

0; Cov (χit | Υi,t−1) = Σχ and E ‖χit‖4 <∞, with Υi,t denoting the σ−algebra generated
by {χis, s ≤ t}.
(ii) The sequences of random variables {χit}t∈Z, i ∈ N+, are such that

χit =
∞∑
`=1

b` (i) η`t,
∞∑
`=1

‖b` (i)‖2 <∞,

where {η`t}t∈Z, ` ∈ N+, are zero mean iid random variables with finite fourth moments

and

sup
`≥1

n∑
i=1

‖b` (i)‖2 <∞. (2.2)

(iii) Denoting Σx,i = Cov (xit;xit), we have that

0 < Σx = lim
n→∞

1

n

n∑
i=1

Σx,i. (2.3)

C3: For all i ∈ N+, the sequences {uit}t∈Z and {zit}t∈Z are mutually independent and

0 < max
1≤i≤n

n∑
j=1

‖ϕu (i, j)ϕz (i, j)‖ <∞, (2.4)

where for any i, j ≥ 1, as defined in (1.1),

ϕu (i, j) = Cov (uit;ujt) , ϕz (i, j) = Cov (zit; zjt) .

C4: T, n→∞ such that n−1 = o
(
T−ξ

)
for any ξ > 0.

We now comment on our conditions. Conditions C1 and C2 indicate that we do not allow for

temporal dependence on the errors {uit}t∈Z, i ∈ N+. Of course, it is possible to relax the latter

condition, allowing uit to follow a model similar to that for zit as given in C2, in which case

we might name (1.2) a “stochastic difference equation panel model”. The only major difference

that we might encounter is that in the latter scenario the estimation procedure would involve

instrumental variables with {zi,t−`}k1`=1 as natural instruments for {yi,t−`}
k1
`=1. However, this is

beyond the scope of the present manuscript as it will only add some extra lengthy technicalities

and/or considerations which are well known when n = 1.

While both cross-sectional and temporal dependence are allowed to be present at the same

time on {zit}t∈Z, as it would then be the case for {yit}t∈Z, we have assumed otherwise a separable
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covariance dependence structure as it is known in the argot of the spatio-temporal literature. See

for instance Cressie and Huang (1999) or Gneiting (2002). Indeed a simple algebra yields that

Cov (zit; zjs) = γz,i (|t− s|)ϕχ (i, j) ,

where γz,i (`) =

∞∑
k=0

ck (i) ck+|`| (i) and ϕχ (i, j) = ϕz (i, j). This type of dependence is often

assumed in empirical work due to its practicality and also in view of the diffi culty to write down

explicit models when the covariance structure of the data is not separable. Nevertheless, it should

be noted that the separability condition can be tested, see for instance Matsuda and Yajima

(2004). Of course, we can modify this condition allowing the sequences {zit}t∈Z, i ∈ N+, to

satisfy some type of mixing condition such as L4− Near Epoch dependence with size greater

than or equal to 2, see Davidson (1994). The latter type of dependence might be useful from a

theoretical/technical point of view if we allow, say that the errors exhibits some form of nonlinear

type of dependence and/or we allow them to suffer from heteroscedasticity of the type σ2 (zit).

Another model where the latter type of dependence proves to be very convenient from a technical

point of view is when we have a nonlinear dynamic panel models, say

yit = ηi + αt + g (yi,t−1; ρt) + θ′tzit + uit, i = 1, ..., n, t = 1, ..., T ,

similar to the nonparametric model examined in Hjellvik, Chen and Tjøstheim (2004). Since the

conclusions of our results should follow with L4−Near Epoch dependence as it has been shown in
an ample number of situations, we have decided to keep C1 and C2 are they stand to facilitate the

proof of the CLT of our estimators which is non standard and requires modifications of existing

results due to our mild conditions. On the other hand, our condition that
∑∞

k=0 ckk
1/2 <∞ rules

out temporal “strong-dependence”for the regressors zit, and hence on yit. There is no doubts that

we can relax this assumption to allow for “strong-dependence”among the regressors zit as well as

the errors uit, at the expense of complicating our technical appendix quite considerably. However,

as there are multiple examples where the results follow whether the data is “weak-dependence”

or “strong-dependence”we have decided to keep our condition C2 for simplicity. Regardless on

whether we allow the latter relaxation on the Conditions C1 and C2, the conditions are quite

mild and as they stand makes our proofs already quite technical.

It is worth noticing that we are not assuming that the temporal dynamic behaviour of the

sequences {zit}t∈Z, i ∈ N+, is common among the cross sectional units, so that we allow for some

form of heterogeneity in the second moments of the data. That is,

Cov (zit; zit) =

( ∞∑
k=0

ck (i)

)
Σχ

( ∞∑
k=0

ck (i)

)′
= Σz,i, (2.5)

which is constant in “i”if ck (i) = ck for all k ≥ 0. This is in line with the assumption in Pesaran

and Smith (1995). In addition, we allow for some trending behaviour which is in tune with Kim

and Sun (2013). However, when T (r) or T ∆ (r) given below in (3.1) and (3.4) respectively are

evaluated at r = T , then there is no difference whether Ezit = µt or Ezit = µ, say. Our conditions
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relax the moment conditions needed elsewhere, for instance those in Pesaran and Yamagata (2008),

who assume finite moments of order greater than 4.

We next turn our focus on the discussion of the cross-sectional dependence induced by our

Conditions C1 and C2. As elsewhere, see Lee and Robinson (2013), we allow for cross-sectional

dependence to be driven by the models outline in parts (ii) of Conditions C1 and C2. In this

sense our conditions relax considerably models employed elsewhere, for instance, our conditions

allow the usual SAR (or more generally SARMA) models. Indeed, by definition of the SAR

model, we have

u = (I − ωW )−1 ε

= (I + Ξ) ε, G =
(
ψj (i)

)n
i,j=1

,

so that ui =
∑n

j=0 ψj (i) εj , which implies that the SAR model can be regarded as a partic-

ular model of that allowed in C1 or C2. In addition, it is worth noting that in C1 the se-

quence
∑n

i=1 |a` (i)| is permitted to grow with n, which is not the case with the SAR model.

So, in this case our conditions are weaker than those typically assumed when cross-sectional de-

pendence is allowed. Of course we can allow the weights a` (i) to depend also on the sample

size “n” as it is often done in SAR models with weight matrices W rowed normalized, how-

ever, the latter does not add anything different. With σi < σ < ∞, moreover, we observe
that

(∑∞
`=1

∑n
i=1 |a` (i)|2

)−1
→n↗∞ 0. While an alternative approach to model, possibly “long-

memory”, cross-sectional dependence is through the presence of common (unobserved) factors, as

in Pesaran (2006) and Bai (2009) , we have decided to follow the model assumed in C1 due to its

similarities with time series models and the fact that it can be considered as a natural generaliza-

tion of the empirically popular SAR models. Finally, we can mention that C2 (iii) implies that

we can allow for some form of multicollinearity among the regressors zit, but only for a fraction of

individuals, as (2.3) indicates that all we need is that on “average”there is no multicollinearity.

We next discuss our Condition C3. The first important point to remark is that expression (2.4)

does not imply that

gu (n) =
1

n

n∑
i,j=1

|ϕu (i, j)| or gz (n) =
1

n

n∑
i,j=1

‖ϕz (i, j)‖

are bounded with n, i.e. that gu (n) + gz (n) < C, although it does imply that

0 < lim
n→∞

∥∥∥∥∥∥ 1

n

n∑
i,j=1

ϕu (i, j)ϕz (i, j)

∥∥∥∥∥∥ <∞. (2.6)

In fact, gu (n) and/or gz (n) can be such that they diverge to infinity with n, in which case {zit}t∈Z
and {uit}t∈Z, i ∈ N+ are “strong-dependent”sequences. On the other hand, their combined cross-

sectional dependence, that is the dependence of the sequence {wit = (zit − E (zit))uit}t∈Z, i ∈ N+,

satisfies

gw (n) =
1

n

n∑
i,j=1

‖ϕw (i, j)‖ < C,
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so that {wit}t∈Z, i ∈ N+ is “weakly dependent”. We do point out that due to the dynamic aspect

of our panel data model (2.4), (2.6) does impose some restriction on the rate of divergence of

gu (n) and gz (n). To see this, suppose for the sake of argument that ϕu (i, j) = ϕu (|i− j|).
In the introduction various examples were given where ϕu (i, j) = ϕu (|i− j|) , i.e., when lattice
type of data is available, so that we can “locate”our individuals in some form of equally space

distance or when the dependence is related to some “economic/geographical”distance as in Conley

(1999). Given ϕu (|i− j|) ' |i− j|2du−1 and ϕz (|i− j|) ' |i− j|2dz−1 with 0 < du < 1/4 and

0 < dz < 1/4 (so that both uit and zit are “strong dependent”), du + dz < 1/2 in (2.4) which

ensures wit is “weakly dependent”. However, it could also fit the framework of Jenish and Prucha

(2012) , who regard observations as lying on an irregularly spaced pattern. It is worth emphasizing

that our assumptions do not imply any type of strong-mixing condition as in Jenish and Prucha

(2012) as that would require that at least gu (n) + gz (n) < C and typically involves the notion

of falling off of dependence as |i− j| increases, which is not very relevant to all spatial situations
of interest, see Lee and Robinson (2013). In fact, drawing similarities with time series literature,

using Ibragimov and Rozanov (1978, Ch. 4), it suggests that our condition rules out any form of

weak dependence, such as strong-mixing, in {wit}t∈Z, i ∈ N+. In addition, and keeping in mind

our previous comments on the behaviour of ϕu (i, j), (2.4) yields that

0 < lim
n→∞

1

n

n∑
i,j=1

ϕ2
u (i, j) <∞,

so that u2
it−E

(
u2
it

)
behaves as if it were a “weakly-dependent”sequence. Finally (2.4) also implies

that

max
1≤i≤n

∣∣∣∣∣∣
n∑
j=1

ϕu (i, j)

∣∣∣∣∣∣
∥∥∥∥∥∥

n∑
j=1

ϕz (i, j)

∥∥∥∥∥∥ = O
(
n1−ζ

)
(2.7)

for some ζ > 0.

Condition (2.6) bears similarities to a condition found in classical time series regression models

with possible “strong-dependence”. There the condition is that∫ π

−π
fui (λ) fzi (ϑ− λ) dλ = fi (ϑ) ϑ ∈ (−π, π]

is a continuous function at ϑ = 0, where fui (λ) and fzi (λ) denote respectively the spectral density

functions of {uit}t∈Z and the regressors {zit}t∈Z, see for instance Robinson and Hidalgo (1997) and

Hidalgo (2003). We then view (2.4), or (2.6), as the counterpart of the last displayed expression

in regression models with cross-sectional dependence.

Finally, Condition C4 is very weak as ξ > 0 effectively means that n has to grow to infinity at

least as fast as T−1 = O
(
log−1 n

)
. Looking at the arguments in the proof, it is possible to relax

it. However, this would involve higher order moments requirements for the sequences {uit}t∈Z
and/or {xit}t∈Z, i ∈ N+. So, we have preferred the former conditions to the latter, as they already

are quite weak. Notice that our Condition C4 relaxes significantly the requirement in Pesaran

and Yamagata (2008), who assumed that n1/2/T → 0 or even n1/4/T → 0.
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Before presenting our first main result, let us introduce some notation. In what follows, we

denote the “average”long-run variance as

V 1 = lim
n→∞

1

n

n∑
i,j=1

{ϕu (i, j)ϕx (i, j)} . (2.8)

For generic sequences {ς it}Tt=1, i = 1, ..., n, we write

˜̃ς it = ς it − ς ·t − ς i· + ς ·· (2.9)

with ς ·t =
1

n

n∑
i=1

ς it; ς i· =
1

T

T∑
i=1

ς it; ς ·· =
1

T

T∑
i=1

ς ·t.

The transformation in (2.9) allows us to remove the individual and time effects ηi and αt from

the model (1.2) . To simplify algebra and notation, we will initially assume that ηi = 0 in (1.2) in

which case the transformation that we need simplifies to

ς̃ it = ς it − ς ·t. (2.10)

That is, we consider

ỹit = β′tx̃it + ũit, i = 1, ..., n and t = 1, ..., T. (2.11)

It is worth noticing that, in view of C1 and C2, the transformation (2.10) is such that Ex̃it = 0.

Let β̂FE be the fixed effect estimator of the slope parameters, i.e.

β̂FE =

(
n∑
i=1

T∑
t=1

x̃itx̃
′
it

)−1( n∑
i=1

T∑
t=1

x̃itỹit

)
, (2.12)

and, for all t ≥ 1, consider

β̂t =

(
n∑
i=1

x̃itx̃
′
it

)−1( n∑
i=1

x̃itỹit

)
. (2.13)

Finally with Σx > 0 as in C2, define

V 2 = Σ−1
x V 1Σ−1

x .

We now give our main result of this section.

Theorem 1. Under Conditions C1− C4 and βt = β, we have that

(a) (Tn)1/2
(
β̂FE − β

)
d→ N (0,V2)

(b) n1/2
(
β̂t1 − β, ..., β̂t` − β

)′ d→ N (0, I` ⊗V2) for any finite ` ≥ 1.

Proof. The proof of this result or any other will be given in the Appendix. �

Remark 1. (i) The estimators β̂t and β̂s are asymptotically independent if s 6= t. This is the

case because Cov(uit, ujs) = 0 for all s 6= t by C1.

(ii) The main conclusions of Theorem 1 hold true when ηi 6= 0, after using the transformation

given in (2.9) to the model.
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(iii) Under the alternative hypothesis, i.e. βt 6= β, we have that Theorem 1 still holds true but

with some minor changes. Indeed, when βt 6= β, we can easily extend our arguments to show that

(a) (Tn)1/2

(
β̂FE −

1

T

T∑
t=1

βt

)
d→ N (0,V2 +W)

(b) n1/2
(
β̂t1 − βt1 , ..., β̂t` − βt`

)′ d→ N (0, I` ⊗V2) , for any finite ` ≥ 1,

where

W=Σ−1
x lim

n,T→∞

1

nT
V ar

(
n∑
i=1

T∑
t=1

xitx
′
it

[
βt −

1

T

T∑
s=1

βs

])
Σ−1
x .

So, the results of Theorem 1 only affects the fixed-effect estimator.

Recalling our definition of V 2, Theorem 1 indicates that to provide inferences about the slope

parameters, we need a consistent estimator of the “average”long-run variance V 1 in (2.8). In our

particular setup, we propose the following very simple estimator

V̂ 1 =
1

T

T∑
t=1

{(
1

n1/2

n∑
i=1

x̃itûit

)(
1

n1/2

n∑
i=1

x̃itûit

)′}
, (2.14)

where ûit = ỹit− β̂
′
FE x̃it, i = 1, ..., n and t = 1, ..., T . V̂ 1 has similarities with the so-called cluster

estimator, see Arellano (1987) or Bester, Conley and Hansen (2011). It is worth remarking that in

(2.14) we cannot employ ûit = ỹit− β̂
′
tx̃it, as

∑n
i=1 x̃itûit = 0 by definition. One important feature

of the above estimator is that, contrary to the HAC estimators of Kelejian and Prucha (2007) or

Kim and Sun (2013), there is no need to introduce any artificial “metric”among observations. It

is not clear that this would be convenient, as changing the “metric”may yield a different estimate

of V 1 and thereby induce potentially different outcomes in our inferences.

Proposition 1. Under the same conditions of Theorem 1, we have that

V̂1 −V1 = op (1) .

We now make some comments on Proposition 1. When βt 6= β, the results in Proposition 1

does not hold true. The reason being that in this case β̂FE would only be a consistent estimator

of limT→∞ T
−1
∑T

t=1 βt as the remark that follows Theorem 1 indicates. There is a second way

to obtain a consistent estimator of V 1 via bootstrap methods. Recall that this approach was one

of the main motivations for the bootstrap in the original paper by Efron (1979) as a method to

estimate the asymptotic covariance of estimators when they are not easy to compute or to provide

an explicit formula. We will delay discussing this approach to Section 4 below.

3. TESTS FOR BREAKS

For sake of simplicity, we shall first consider the case where ηi = 0. In Section 3.2 we discuss

the setting when ηi 6= 0.
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3.1. TESTING FOR BREAKS WHEN ηi = 0.
We now introduce two related tests for breaks of the slope parameters in our model (1.2). Our

first approach to test H0 in (1.3), a CUSUM type test, is based on the behaviour of

T (r) =
1

(nT )1/2

r∑
t=1

n∑
i=1

x̃it

(
ỹit − β̂

′
FE x̃it

)
, r = 1, ..., T − 1. (3.1)

The intuition for T (r) is that under the null hypothesis, we expect that x̃it
(
ỹit − β̂

′
FE x̃it

)
'

x̃ituit which has a mean equal to zero, while under the alternative hypothesis we have that

x̃it

(
ỹit − β̂

′
FE x̃it

)
will develop a term of the type

x̃itx̃
′
it

(
βt − β̂FE

)
' x̃itx̃′it

(
βt −

1

T

T∑
s=1

βs

)
, (3.2)

see Remark 1 or Theorem 1. Under the alternative therefore, T (r) would be governed by the

non-zero function

h (r) =

{
1

n

n∑
i=1

E
(
x̊itx̊

′
it

)} n1/2

T 1/2

r∑
t=1

(
βt −

1

T

T∑
s=1

βs

)
,

where for generic sequences {ς it}t∈Z, i ∈ N+, we denote

{̊ς it}t∈Z = {ς it − E (ς it)}t∈Z , i ∈ N+.

The preceding arguments suggest that one possible method to test the null hypothesis in (1.3)

might be based on continuous functionals of T (r).

Our second approach is based on the observation that we can regard H0 as testing whether the

slope parameters βt are the same across time, where for a given time period t, we can estimate

βt as in (2.13). This test recognizes that under H0, we can use the mean group (MG) estimator

β̃FE =
1

T

T∑
s=1

β̂s, (3.3)

see Pesaran, Shin and Smith (1999) , as an estimator for the common slope parameters β. While

under the null, for every t, β̂t − β̃FE converges to zero in probability, under the alternative

hypothesis β̂t− β̃FE will develop a mean different than zero. Our Hausman-Durbin-Wu’s type of
statistic then, is based on continuous functionals of

T ∆ (r) =
n1/2

T 1/2

r∑
t=1

(
β̂t − β̃FE

)
. (3.4)
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It is worth noticing that test based on T (r) and T ∆ (r) are related. Indeed, using the definition

of β̂FE , we easily obtain

T (r) ≡ 1

(nT )1/2

r∑
t=1

n∑
i=1

x̃it

(
ỹit − β̂

′
FE x̃it

)

' n1/2

T 1/2

(
r∑
t=1

(
1

n

n∑
i=1

x̃itx̃
′
it

)
β̂t −

r

T

T∑
s=1

(
1

n

n∑
i=1

x̃isx̃
′
is

)
β̂s

)
= ΣxT ∆ (r) (1 + op (1)) ,

so that T ∆ (r) is a “weighted” version of T (r) for any r. We point out that our tests have

similarities with the ∆ test in Pesaran and Yamagata (2008), see also Swamy (1970). However,

as we will notice in Section 3.3 below, tests based on (3.1) or (3.4) can detect local alternatives

which the ∆ test cannot.

Let B (τ) denote the standard Brownian motion in [0, 1] and BB (τ) = B (τ) − τB (1) the

standard Brownian bridge.

Theorem 2. Assuming C1− C4, under H0, we have that as n, T →∞,

(a)
1

(nT )1/2

[Tτ ]∑
t=1

n∑
i=1

x̃it

(
ỹit − β̂

′
FE x̃it

)
d

=⇒ V1/2
1 BB (τ)

(b)
n1/2

T 1/2

[Tτ ]∑
t=1

(
β̂t − β̃FE

)
d

=⇒ V1/2
2 BB (τ) , if T = o

(
n2
)
.

It is worth mentioning that the condition T = o
(
n2
)
in part (b) can be relaxed at the expense

of higher order moments and a lengthening of the proof of the theorem. We have not pursued this

route as the constraint on T and n does not seem to be too stringent and in most of the empirical

examples seems to be satisfied.

For any continuous mapping function ϕ (·) , our tests are given by

T = ϕ

(
T ′ (r) V̂−1

1 T (r)

w2 (r/T )

)
and T ∆ = ϕ

(
T ∆′ (r) V̂

−1

2 T ∆ (r)

w2 (r/T )

)
, (3.5)

where w (τ), τ ∈ [0, 1], is a weighting function that (i) is non-decreasing in a neighbourhood of 0,

(ii) is non-increasing in a neighbourhood of 1, (iii) is positive on (η, 1− η) and (iv) satisfies∫ 1

0

1

τ (1− τ)
exp

(
−c w2 (τ)

τ (1− τ)

)
dτ <∞. (3.6)

A standard weighting w (τ) function which satisfies these conditions is w (τ) = 1. The common

choice w (τ) = τ1/2 (1− τ)1/2, implicitly used in Andrews (1993) and many subsequent authors,

on the other hand, fails to satisfy this condition (3.6). While the latter weight function provides a

natural standardization of our test, as it represents the standard deviation of a standard Brownian

Bridge, it does have the drawback of requiring trimming for values of τ close to 0 and 1. In fact,

any weighting function that does not satisfy (3.6) is subject to the use of some trimming for

values to close to 0 or to 1, which is a well known result, see for instance Shorack and Wellner

(2009, p.462).
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We then have the following result.

Corollary 1. Assuming C1 − C4, under H0 and w (τ) satisfying (3.6) as n, T → ∞, we have
that

(a) T d
=⇒ ϕ

(
(BB (τ))′ (BB (τ))

w2 (τ)

)
(b) T ∆ d

=⇒ ϕ

(
(BB (τ))′ (BB (τ))

w2 (τ)

)
if T = o

(
n2
)
.

Proof. The proof of this corollary follows easily by Proposition 1 and Theorem 2. Indeed Propo-

sition 1 indicates that

V̂
−1/2

1

(nT )1/2

[Tτ ]∑
t=1

n∑
i=1

x̃it

(
ỹit − β̂

′
FE x̃it

)
=
V−1/2

1

(nT )1/2

[Tτ ]∑
t=1

n∑
i=1

x̊it

(
ẙit − β̂

′
FE x̊it

)
(1 + op (1))

V̂
−1/2

1

n1/2

T 1/2

[Tτ ]∑
t=1

(
β̂t − β̃FE

)
= V−1/2

1

n1/2

T 1/2

[Tτ ]∑
t=1

(
β̂t − β̃FE

)
(1 + op (1)) .

From here, Theorem 2 and the continuous mapping theorem yield the conclusion of the corollary.

�

Corollary 1 indicates that when w (τ) = 1, we have

max
0<r<T

∣∣∣T (r)′ V̂
−1

1 T (r)
∣∣∣ d

=⇒ max
0<τ<1

∣∣(BB (τ))′ (BB (τ))
∣∣

max
0<r<T

∣∣∣T ∆ (r)′ V̂
−1

2 T ∆ (r)
∣∣∣ d

=⇒ max
0<τ<1

∣∣(BB (τ))′ (BB (τ))
∣∣ , if T = o

(
n2
)
,

which correspond to a Kolmogorov-Smirnov’s type of statistic. However when w2 (τ) = τ (1− τ),

which corresponds to the weight function implicit in Andrews (1993) , (3.6) is not satisfied so that

as in Andrews (1993) we trim for values close to the boundary, that is consider

max
[Tε]<r<T−[Tε]

∣∣∣∣∣T (r)′ V̂
−1

1 T (r)

w2 (r/T )

∣∣∣∣∣ d
=⇒ max

ε<τ<1−ε

∣∣∣∣(BB (τ))′ (BB (τ))

w2 (τ)

∣∣∣∣
max

[Tε]<r<T−[Tε]

∣∣∣∣∣T ∆ (r)′ V̂
−1

2 T ∆ (r)

w2 (r/T )

∣∣∣∣∣ d
=⇒ max

ε<τ<1−ε

∣∣∣∣(BB (τ))′ (BB (τ))

w2 (τ)

∣∣∣∣ ,
for some 0 < ε < 1

2 .

Of course, we can use other weighting functions w (τ) to target particular alternatives in a

similar way as directional tests do in goodness-of-fit tests, see also Andrews and Ploberger (1994).

We have not pursued this somewhat standard extension.

Neither have we pursued the scenario put forward in the introduction of ε → 0, as in Hidalgo

and Seo (2013) who basically examine the consequences when w (τ) fails the condition in (3.6)

and no trimming is used. Bear in mind, the purpose of trimming and the introduction of a weight

function satisfying (3.6) is somehow to make maxr<[Tε] or maxT−[Tε]<r asymptotically negligible,

as the asymptotic distribution becomes a Gumbel distribution when the latter is not true, see

also Horváth (1993).



16 JAVIER HIDALGO AND MARCIA SCHAFGANS

3.2. TESTING FOR BREAKS WHEN ηi 6= 0.
We shall now extend our previous tests for homogeneity of the slope parameters in our model

(1.2) to the setting when ηi 6= 0. For notational simplicity, we have decided to assume that

αt = 0. That is, we consider

yit = ηi + β′txit + uit, i = 1, ..., n, t = 1, ..., T.

As we did in the previous section, we first remove the individual fixed effects ηi, i ∈ N+ before

estimating our parameters βt. To that end, using (2.9), and denoting for generic sequences

{ς it}Tt=1, i = 1, ..., n,

ς†it = ς it − ς i· (3.7)

we have

y†it = β′txit −
1

T

T∑
s=1

β′sxis + u†it. (3.8)

The main difference between (3.8) and the model examined in Section 3.1 is that under the

alternative hypothesis the “standard” transformed regressor x†it no longer appears. Of course,

under the null hypothesis (1.3), it does and (3.8) becomes

y†it = β′x†it + u†it, i = 1, ..., n, t = 1, ..., T .

Denoting by

β̂FE =

(
n∑
i=1

T∑
t=1

x†itx
†′
it

)−1( n∑
i=1

T∑
t=1

x†ity
†
it

)
,

the estimator of the (common) slope parameters under the null hypothesis, our CUSUM based

test will now look at the behaviour of

T † (r) =
1

(nT )1/2

r∑
t=1

n∑
i=1

x†it

(
y†it − β̂

′
FEx

†
it

)
, r = 1, ..., T − 1. (3.9)

Similarly, denoting by

β̂s =

(
n∑
i=1

x†isx
†′
is

)−1( n∑
i=1

x†isy
†
is

)
the estimator of the time specific slope parameters and the associated mean group (MG) estimator

by β̃FE = 1
T

∑T
s=1 β̂s, our Hausman-Durbin-Wu’s type of statistic will look at the behaviour of

T ∆† (r) =
n1/2

T 1/2

r∑
t=1

(
β̂t − β̃FE

)
for r ≥ 1 (3.10)

Before we describe the statistical properties of T † (r) and T ∆† (r), we shall examine the as-

ymptotic behaviour of β̂FE and β̂s.

Proposition 2. Under Conditions C1− C4 and βt = β, we have that

(a) (Tn)1/2
(
β̂FE − β

)
d→ N (0,V2)

(b) n1/2
(
β̂t1 − β, ..., β̂t` − β

)′ d→ N (0, I` ⊗V2) for any finite ` ≥ 1.

Proof. The proof proceeds similarly as that of Theorem 1 and is therefore omitted. �
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We now give the main result of this section.

Theorem 3. Assuming C1 − C4, under H0 and w (τ) satisfying (3.6), as n, T → ∞, we have
that

(a) T † = ϕ

(
T † (r)′ V̂

−1

2 T † (r)

w2 (r/T )

)
d

=⇒ ϕ

(
(BB (τ))′ (BB (τ))

w2 (τ)

)
,

(b) T ∆† = ϕ

(
T ∆† (r)′ V̂

−1

2 T ∆† (r)

w2 (r/T )

)
d

=⇒ ϕ

(
(BB (τ))′ (BB (τ))

w2 (τ)

)
, if T = o

(
n2
)
.

Proof. The proof proceeds as that of Theorem 2 by recognizing that by Proposition 1

V̂
−1/2

1

(nT )1/2

[Tτ ]∑
t=1

n∑
i=1

x†it

(
y†it − β̂

′
FEx

†
it

)
=
V−1/2

1

(nT )1/2

[Tτ ]∑
t=1

n∑
i=1

x̊it

(
ẙit − β̂

′
FE x̊it

)
(1 + op (1))

V̂
−1/2

1

n1/2

T 1/2

[Tτ ]∑
t=1

(
β̂t − β̃FE

)
= V−1/2

1

n1/2

T 1/2

[Tτ ]∑
t=1

(
β̂t − β̃FE

)
(1 + op (1)) .

Application of Proposition 2 and the continuous mapping theorem yield the desired result. �

3.3. LOCAL ALTERNATIVES AND CONSISTENCY OF THE TESTS.
We now discuss the local alternatives for which the tests described in the previous two sections

have nontrivial power and from there easily conclude their consistency. To that end, we begin by

considering the local alternatives

Ha : βt = β + δnTI (t > t0) , (3.11)

where t0 = [Tτ0] for some τ0 ∈ (ε, 1− ε) with ε > 0, and δnT is a deterministic sequence depending

on n and/or T . To shorten the discussion we will only explicitly handle the behaviour under Ha

and discuss the consistency of tests based on T † (r) and T ∆† (r) in (3.9) and (3.10), respectively.

The conclusions for T (r) and T ∆ (r) are qualitatively the same and are handled similarly.

For this purpose, introduce the “shift”function

Ξ (τ) = (τ − τ0) I (τ > τ0)− τ (1− τ0) . (3.12)

We then establish the following result.

Proposition 3. Assuming C1 − C4, under Ha with δnT = δ/ (nT )1/2, |δ| > 0, we have that as

n, T →∞,

(a)
1

(nT )1/2

[Tτ ]∑
t=1

n∑
i=1

x†it

(
y†it − β̂

′
FEx

†
it

)
d

=⇒ V1/2
1 BB (τ) + δΣxΞ (τ)

(b)
n1/2

T 1/2

[Tτ ]∑
t=1

(
β̂t − β̃FE

)
d

=⇒ V1/2
2 BB (τ) + δΞ (τ) , if T = o

(
n2
)
.

Proposition 3 indicates that the tests have no trivial power if the alternative hypothesis con-

verges to the null at the rate (nT )1/2. On the other hand, when δ−1
nT = o

(
(nT )1/2

)
, the statistic

diverges to infinity, that is the test will reject with probability 1 as the sample size increases.
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Finally, when δnT = o
(

(nT )−1/2
)
, the asymptotic distribution is identical to that obtained un-

der the null hypothesis. This clearly improves on the local alternatives given in Pesaran and

Yamagata (2008), who only were able to detect local alternatives δnT = O
(
n−1/4T−1/2

)
. In this

way, their test has zero asymptotic relative effi ciency compared to ours.

The consistency of the test is given in the following corollary.

Corollary 2. Assuming C1− C4, under Ha with δnT = δ for all n and T , we have that

(a) Pr

{
ϕ

(
T (r)′ V̂

−1

1 T (r)

w2 (r/T )

)
> a

}
→ 1

(b) Pr

{
ϕ

(
T ∆ (r)′ V̂

−1

2 T ∆ (r)

w2 (r/T )

)
> a

}
→ 1 if T = o

(
n2
)

for any a > 0 and continuous w (τ).

Proof. The proof is standard from Proposition 3, so it is omitted. �

Remark 2. (i) It is important to mention that we have not assumed that w (τ) satisfies (3.6) on

purpose. The reason is that under the alternative hypothesis we have assumed τ0 ∈ (ε, 1− ε) for
some ε > 0. Of course, if w (τ) would satisfy (3.6), we then could take ε = 0. However, we do not

want to lengthen the paper with this unnecessary and rather trivial discussion.

(ii) Our main conclusion in this section does not depend on the fact that the break or hetero-

geneity of the slope parameters is abrupt in nature. Indeed, suppose that we replace Ha in (3.11)

by the following alternative hypothesis

Ha : βt = β +
1

(nT )1/2

{
L∑
`=1

δ`I (t > t`) + δ

(
t

T

)}
,

where δ (τ) is a continuous (smooth) function in τ ∈ (0, 1) while |δ`| > 0, ` = 1, .., L permits

discrete jumps. The only difference lies in the form of the shift function Ξ (τ) appearing in (3.12).

Indeed, with the (local) alternatives given in the last displayed expression, the shift function Ξ (τ)

becomes

Ξ (τ) =
L∑
`=0

δ`I (τ > τ `)− τ
L∑
`=1

δ` (1− τ `) +

∫ τ

0
δ (υ) dυ − τ

∫ 1

0
δ (υ) dυ.

It is clear that Ξ (τ) is different from zero in a set Λ ⊂ [0, 1] with positive Lebesgue measure.

Indeed, suppose for simplicity that δ` = 0 for all ` ≥ 0, then

Ξ (τ) =

∫ τ

0
δ (υ) dυ − τ

∫ 1

0
δ (υ) dυ.

In that case Ξ (τ) = 0 for all τ ∈ (0, 1) if and only if δ (τ) is a constant function which is ruled

out as it would imply that Ha ⊂ H0. To see this, we notice that Ξ (τ) =
∫ τ

0

{
δ (υ)− δ

}
dυ, where

δ =
∫ 1

0 δ (υ) dυ. But Ξ (τ) = 0 for all τ ∈ (0, 1) if and only if δ (υ) = δ for all υ ∈ (0, 1).

We finish the section commenting on the power of the tests in the situations mentioned in the

introduction, namely (i) when the time of the break is towards the end of the sample and (ii)

when the number of individuals for which a break exists is negligible compared to n.
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We first consider (i). Assume that βt = β if t ≤ T − T0 (T0 small) and βt = β + δ otherwise.

Consider the decomposition

1

T

T̃∑
t=1

(
β̂t − β̃FE

)
(3.13)

=
1

T

T̃∑
t=1

(
βt −

1

T

T∑
s=1

βs

)
+

1

T

T̃∑
t=1

{(
β̂t − βt

)
−
(
β̃FE −

1

T

T∑
s=1

βs

)}
.

The second term on the right of (3.13) is O
(

(nT )1/2
)
, whereas the first term equals{

−δ T̃T
T0
T if T̃ < T − T0

−δ
(
T−T0
T

) (
T−T̃
T

)
if T̃ ≥ T − T0.

So, we have that

n1/2

T 1/2

[Tτ ]∑
t=1

(
β̂t − β̃FE

)
= Op (1)−

{
n1/2T0
T 1/2

δτ if [Tτ ] < T − T0

n1/2(T−T0)

T 1/2
δ (1− τ) if [Tτ ] ≥ T − T0,

implying that tests based on T ∆ (r) will diverge and hence be consistent if C−1 < n1/2T0
T 1/2

for some

positive finite constant C. The same conclusions are drawn regarding tests based on T (r). We

point out here that when n = 1, the condition for consistency, i.e., that T0 does not grow slower

than T 1/2, corresponds to the result obtained for the LMτ test in Hidalgo and Seo (2013) .

Next we consider the situation (ii). Suppose for sake of argument that the break occurs at

τ0 = 1/2, and that it only occurs for the first ι (n) individuals with the condition that ι (n) = o (n).

Again we examine the behaviour of T ∆ (r). After standard algebra, we have that

β̂t = Op (1) +

{
β if t < T/2

β + δ ι(n)
n if t ≥ T/2.

So, we obtain that

n1/2

T 1/2

[Tτ ]∑
t=1

(
β̂t − β̃FE

)
= Op (1)− 1

2

{
δ ι(n)[Tτ ]

n1/2T 1/2
if [Tτ ] < 1

2T

δ ι(n)(T−[Tτ ])

n1/2T 1/2
if [Tτ ] ≥ 1

2T ,

which implies that test based on T ∆ (r) will diverge and hence be consistent if C−1 < T 1/2ι (n) /n1/2.

4. BOOTSTRAP ALGORITHM

One of our motivations for introducing a bootstrap algorithm for our tests (and estimators) is

that our tests suffer small sample biases which in some cases, as supported by our Monte Carlo

experiments, can be quite substantial. Among other reasons, these biases may be due to the fact

that the asymptotic distribution yields a poor approximation in finite samples given our estimator

of the long run variance V 1. In such situations the bootstrap approach can, as is well known,

provide a tool to improve its finite sample behaviour. A quick glance at our conditions in Section 2,

may suggest that a bootstrap mechanism may not be easy to implement (let alone to establish its

validity) since one of the basic requirements for its validity is that the bootstrap algorithm should

preserve the covariance structure. Drawing analogies with the time series literature, one may be
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tempted to use the block bootstrap principle. However, since there is no obvious ordering of the

data in the cross-sectional dimension, it is not clear that a block bootstrap would work in our

context or what its sensitivity would be to a particular chosen ordering of the data (over and above

the problem of how to choose the block size). Instead, we propose here a valid bootstrap algorithm

with the interesting, and surprising, feature that it is computationally simple, mainly due to the

observation that there is no need to estimate, either by parametric or nonparametric methods, the

cross-sectional dependence of the error term. Moreover the bootstrap has the additional attractive

feature that we do not need to choose any tuning parameter for its implementation, as would be

the case with a moving block bootstrap type of bootstrap.

More specifically, we provide two bootstrap algorithms. The first bootstrap procedure is de-

scribed in the following 4 STEPS.

STEP 1 : We compute the residuals {ûit}Tt=1, i = 1, ...n, as

ûit = ỹit −
k1∑
`=1

ρ̂t`ỹi(t−`) − θ̂
′
tz̃it, i = 1, ..., n; t = 1, ..., T

and obtain the centered residuals as

ǔit = ûit −
1

T

T∑
t=1

ûit. (4.1)

Remark 3. The motivation to employ (4.1) to center the residuals will become apparent when

looking at the next STEP 2.

STEP 2 : Denoting Ǔt = {ǔit}ni=1, we do standard random resampling from the empirical

distribution of
{
Ǔt
}T
t=1
. The bootstrap sample is denoted by {U∗t }

T
t=1.

STEP 3 : Generate the bootstrap dynamic panel data model as

ỹ∗it =

k1∑
`=1

ρ̃FE,`ỹi(t−`) + θ̃
′
FE z̃it + u∗it, i = 1, ..., n, t = 1, ..., T , (4.2)

where ρ̃`, ` = 1, ..., k1, and θ̃ are the MG estimators in (3.3).

STEP 4 : Compute the test statistics using model (4.2) as if it were the true panel regression

model. That is, for r = 1, ..., T − 1,

T ∗ (r) =
1

(nT )1/2

r∑
t=1

n∑
i=1

x̃it

(
ỹ∗it − β̂

′∗
FE x̃it

)

T ∆∗ (r) =
(n
T

)1/2
r∑
t=1

(
β̂
∗
t − β̃

∗
FE

)
.

In the latter step, β̂
∗
FE denotes the fixed effect estimator of the slope parameters β, i.e.

β̂
∗
FE =

(
n∑
i=1

T∑
t=1

x̃itx̃
′
it

)−1( n∑
i=1

T∑
t=1

x̃itỹ
∗
it

)
,
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and β̂
∗
t = (

∑n
i=1 x̃itx̃

′
it)
−1 (

∑n
i=1 x̃itỹ

∗
it) with β̃

∗
FE denoting the MG bootstrap estimator

β̃
∗
FE =

1

T

T∑
s=1

β̂
∗
s.

Before establishing the validity of the bootstrap tests T ∗ and T ∆∗ (defined below), we establish

the following results.

Theorem 4. Assuming Conditions C1− C4, we have that (in probability)

(a) (Tn)1/2
(
β̂
∗
FE − β̃FE

)
d∗→ N (0,V2)

(b) n1/2
(
β̂
∗
t1 − β̃FE , ..., β̂

∗
t`
− β̃FE

)′ d∗→ N (0, I` ⊗V2) for any finite ` ≥ 1.

Recalling that V 2 = Σ−1
x V 1Σ−1

x , a consistent bootstrap estimator of the “average” long-run

variance V 1, is given by

V̂
∗
1 =

1

T

T∑
t=1

(
1

n1/2

n∑
i=1

x̃itû
∗
it

)(
1

n1/2

n∑
i=1

x̃itû
∗
it

)′
, (4.3)

and û∗it = ỹ∗it − β̂
∗′
FE x̃it, i = 1, ..., n and t = 1, ..., T , as the next proposition establishes.

Proposition 4. Assuming C1− C4, we have that

V̂
∗
1 −V1 = op∗ (1) .

We now give the validity of our bootstrap test. To save space we shall only consider it explicitly

when ηi = 0, with the general situation when ηi 6= 0 handled similarly.

Theorem 5. Assuming C1 − C4 and w (τ) satisfying (3.6), we have that as n, T → ∞, in
probability

(a) T ∗ = ϕ

T ∗ (r)′
(
V̂
∗
1

)−1
T ∗ (r)

w2 (r/T )

 d∗
=⇒ ϕ

(
(BB (τ))′ (BB (τ))

w2 (τ)

)

(b) T ∆∗ = ϕ

T ∆∗ (r)′
(
V̂
∗
2

)−1
T ∆∗ (r)

w2 (r/T )

 d∗
=⇒ ϕ

(
(BB (τ))′ (BB (τ))

w2 (τ)

)
if T = o

(
n2
)
,

where ϕ (·) : R+ → R+ is a continuous functional.

While the first bootstrap algorithm is given under C1 with E
[
v2
it | Vi,t−1

]
= σ2, the second

allows E
[
v2
it | Vi,t−1

]
= σ2

t , i ∈ N+. While a rigorous proof of the validity of the next bootstrap

algorithm in the presence of conditional heteroscedasticity is beyond the scope of this paper, its

validity under C1 can be proven quite similarly and has therefore been left out. The second

bootstrap algorithm is described in the next 4 STEPS.
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STEP 1′: We compute the residuals as

ûit = ỹit −
k1∑
`=1

ρ̃`,FE ỹi,t−` − θ̃
′
FE z̃it, i = 1, ..., n, t = 1, ..., T .

Let the centered residuals be ǔit = ûit − 1
T

∑T
t=1 ûit.

STEP 2′: Generate a random sample {ξt}Tt=1 with zero mean and unit variance and obtain

the bootstrap error terms as

{u∗it} = {ǔitξt} , i = 1, ..., n, t = 1, ..., T .

Remark 4. It is important to emphasize that while one might be tempted to obtain the residuals
under the alternative hypothesis (as we did in the previous bootstrap), this would not be possible

here. The reason for this is that it would translate into a bootstrap statistic that would be identically

zero. Indeed, it is not diffi cult to see that its behaviour is governed by that of
n∑
i=1

u∗itx̃it = ξt

n∑
i=1

ǔitx̃it = 0

by orthogonality between residuals and regressors.

STEP 3′: Generate the bootstrap panel data model as

ỹ∗it =

k1∑
`=1

ρ̃`,FE ỹi,t−` + θ̃
′
FE z̃it + u∗it, i = 1, ..., n, t = 1, ..., T . (4.4)

STEP 4′: Compute the bootstrap analogues of our statistics T (r) and T ∆ (r) with (4.4)

as our dynamic panel regression model. That is, for r = 1, ..., T − 1,

T ∗ (r) =
1

(nT )1/2

r∑
t=1

n∑
i=1

x̃it

(
ỹ∗it − β̂

∗′
FE x̃it

)
T ∆∗ (r) =

(n
T

)1/2
r∑
t=1

(
β̂
∗
t − β̃

∗
FE

)
.

In the latter step, β̂
∗
FE denotes the fixed effect estimator of the slope parameters β, i.e.

β̂
∗
FE =

(
n∑
i=1

T∑
t=1

x̃itx̃
′
it

)−1( n∑
i=1

T∑
t=1

x̃itỹ
∗
it

)
,

and β̂
∗
t = (

∑n
i=1 x̃itx̃

′
it)
−1 (

∑n
i=1 x̃itỹ

∗
it) with β̃

∗
FE denoting the MG bootstrap estimator

β̃
∗
FE =

1

T

T∑
s=1

β̂
∗
s.

Remark 5. (i) The second bootstrap approach is similar to that in Chan and Ogden (2009) and

can be regarded as a wild-type bootstrap with increasing dimensional vectors. In this sense, we can

view the bootstrap as a generalization or extension of bootstrapping V AR (P ) models, say, when

the dimension of the (time series) sequence n grows with no limit. Notice that in the case of finite

n, a standard approach to bootstrap V AR models is to obtain the bootstrap errors as {etξt}Tt=1,

where ξt is a scalar sequence and et denote residuals.
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(ii) We have assumed that the sequence {ξt}Tt=1 has mean zero and unit variance. In the standard

wild bootstrap algorithm, it is often suggested that the random variables ξt should also have unit

skewness. As our purpose is to illustrate and describe a valid bootstrap in our scenario, we have

ignored this.

One major and important difference between the two bootstrap algorithms is that in the latter

algorithm we cannot use the residuals obtained under the alternative hypothesis, that is ûit =

ỹit − β̂
′
tx̃it. It is well known that the use of residuals obtained under the null in the bootstrap,

although needed to establish its validity, may suffer from inferior power properties than similar

bootstraps where the residuals are computed under the alternative hypothesis. Indeed this is

corroborated in our simulation results and reinforces the observation that for bootstrapped tests

to have good power properties the residuals should be computed under the alternative hypothesis

when possible. The heuristic explanation for this comes from the observation that residuals

that are computed under the null hypothesis will not “estimate” the true error term when the

alternative hypothesis is true.

In both bootstrap algorithmns, specifically as it relates to STEP 3 and STEP 3′, we have kept

yi,t−` as an explanatory covariate instead of y∗i,t−` as is typically done in time series data, see e.g.

Neumann and Kreiss (1998).

We conclude this section by providing a bootstrap estimator for V 2, and hence V 1 = ΣxV2Σx,

for use in our tests (3.5). To that end, suppose that we compute β̂
∗
FE , as in STEP 4, for B

bootstrap samples STEPS 2 and 3, that is

β̂
∗
FE (b) =

(
n∑
i=1

T∑
t=1

x̃itx̃
′
it

)−1( n∑
i=1

T∑
t=1

x̃itỹ
∗
it (b)

)
, b = 1, ..., B,

where

ỹ∗it (b) =

k1∑
`=1

ρ̃FE,`ỹi(t−`) + θ̃
′
FE z̃it + u∗it (b) , i = 1, ..., n, t = 1, ..., T ,

{U∗t (b)}Tt=1 ,

and U∗t (b) = {u∗it (b)}ni=1. The estimate for V 2 we may use in our tests (3.5) then is given by

V̂
∗
2 =

1

B

B∑
b=1

(
β̂
∗
FE (b)− 1

B

B∑
v=1

β̂
∗
FE (v)

)2

which would replace V̂ 2 when making inferences.

5. FINITE SAMPLE BEHAVIOUR.

In this section we present a Monte-Carlo experiment that illustrates the performance of our

tests in finite samples where. We consider the typical weighting functions w (τ) = 1 and w (τ) =

τ−1/2 (1− τ)−1/2 and we compare the bootstrap algorithms used to obtain valid critical values,

revealing that both typically outperform the use of asymptotic critical values.
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The data generating processes we consider are

DGP1 : yit = αt + ρyi,t−1 + θzit + δθzit1(t > t0) + uit

DGP2 : yit = αt + ρyi,t−1 + δρyi,t−21(t > t0) + θzit + uit

for i = 1, ..., n and t = 1, ..., T . We allow for breaks in the slope of the strictly exogenous

variable zit (δθ) and the number of lagged endogenous variable(s) (δρ) and consider different

scenarios for the time of the break (t0). The time fixed effects αt are drawn randomly across t

(αt ∼ IIDN(1, 1)) and are held fixed across replications. The regressor, zit, is a strictly exogenous

regressor generated as

zit = αt + vit with vit = ρzivi,t−1 +
√

1− ρ2
ziϑit

and either (i) ρzi = 0 (no temporal dependence), (ii) ρzi = 0.5 or 0.9 (individual-homogenous

autoregressive time dependence), or (iii) ρzi ∼ IIDU [0.05, 0.95] (individual-heterogeneous au-

toregressive time dependence). For robustness, we separately consider the presence of individual

fixed effects ηi in zit, with ηi drawn randomly across i (ηi ∼ IIDN(1, 1)) and held fixed across

replications. Several cross-sectional dependence scenarios are considered for zit (ϑit) : no spatial

dependence, weak spatial dependence and strong spatial dependence. In the absence of cross-

sectional dependence, the error term ϑit is IIDN(0, σ2
zi) for i = 1, .., n with σ2

zi ∼ IIDχ2(1)

held fixed across replications (or σ2
zi = 1 when ignoring heteroscedasticity). We consider two

weak spatial dependence formulations. First we follow Robinson and Lee (2013). Here random

locations for individual units are drawn along a line, denoted s = (s1, ...sn)′ with si ∼ IIDU [0, n].

Keeping these locations fixed across replications, ϑit are generated independently as scalar normal

variables with mean zero and covariances cov(ϑit, ϑjt) = σziσzj (0.5)|si−sj |, ensuring zit exhibits

an exponential decay in dependence with distance across individuals. Second, we consider a

polynomial decay of dependence in zit with distance across individuals. Using the linear time

dependence representation, ϑit = σi (
∑∞

`=1 c` (i) e`t), we chose c`(i) = |s` − si|−10 where si and s`
are random locations (si is drawn from IIDU [0, n] as before, while s` is drawn from IIDN(0, n))

and e`t ∼ IIDN(0, 1). σi is such that V ar(ϑit) = σ2
zi . For the strong spatial dependence setting,

we use c`(i) = |s` − si|−0.9 instead.1

While not allowing for any temporal dependence of the error term, we consider the same

scenarios for the cross-sectional dependence for the error term uit. In the absence of cross-

sectional dependence, uit ∼ IIDN(0, σ2
ui) for i = 1, ..., n with σ2

ui ∼ IIDχ2(2)/2 held fixed

across replications (or σ2
ui = 1 when ignoring heteroscedasticity). The above discussion of the

cross-sectional dependence scenarios for ϑit, suitably modified, holds for uit.

In the tables below, we report empirical size and power of our tests at the nominal 5% level for

various pairs of n and T using 10,000 simulations. The columns labelled Tε relate to the CUSUM
based test, while T ∆

ε relate to the associated Hausman-Durbin-Wu type, or slope based, test.

When ε = 0, they present the untrimmed version of the tests with w(τ) = 1; for the trimmed

1In the polynomial case, we use max(1, |s`−si|) as our measure of distance; not imposing such a censoring would
remove all dependence in settings where for some (`, i) s` and si lie very close together.
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versions of the test (ε > 0) we apply w (τ) = τ−1/2 (1− τ)−1/2. Under the null H0 : δ = 0 with

δ = (δρ|δθ)′ both DGPs are identical. We let ρ = 0.5 and θ = 1.

In the first set of simulations (Tables 1.1—1.6), we ignore any heterogeneity or time dependence

issues and focus on the cross-sectional dependence of zit and uit only; here zit is correlated with

αt (no individual heterogeneity in zit). The empirical size of our tests for the joint null H0 : δ = 0

against H0 : δ 6= 0 in either DGP is provided in Table 1.1.

Insert Table 1.1 around here

The exact asymptotic critical values from Estrella (2003) with p = 2 are used to obtain the

empirical size of the trimmed version of the test. They suggest that in finite samples, the CUSUM

based test is undersized for all cross-sectional dependence scenarios; the slope based test on the

other hand appears oversized when n is quite small (n = 25) , especially in the presence of stronger

cross-sectional dependence. The empirical sizes based on the two bootstrap algorithms are given

for both the trimmed and untrimmed versions of the test. In general, the empirical size of our tests

based on the bootstrap algorithm are much closer to the nominal size, with the Efron bootstrap

yielding in most scenarios an empirical size closest to the nominal size. For example, with small

sample sizes (n = T = 25) the empirical size of the untrimmed CUSUM test T0 based on the Efron

bootstrap equals 0.047 in the absence of spatial dependence, 0.051 and 0.047 in the presence of

respectively exponential and polynomial weak spatial dependence, versus 0.050 in the presence

of strong spatial dependence. The performance of the T ∆
ε test vis-a-vis the Tε test suggests a

worsening of the coeffi cient based test with the level of spatial dependence. For small sample

sizes (n = T = 25) the empirical size of the untrimmed coeffi cient test, T ∆
0 , based on the Efron

bootstrap equals 0.048 in the absence of spatial dependence, 0.036 and 0.039 in the presence of

respectively exponential and polynomial weak spatial dependence, versus 0.011 in the presence of

strong spatial dependence. For the T ∆
ε test to remain properly sized, the cross sectional sample

needs to be larger when the level of spatial dependence increases. The simulations do reveal

fluctuation in the empirical sizes associated with the level of trimming of our test. Increasing the

trimming generally improves the size of the tests with w (τ) = τ−1/2 (1− τ)−1/2 but this obviously

limits the possibility of detecting a break closer to the end of the sample due to this trimming.

In view of this, the good performance of the untrimmed tests with w(τ) = 1 is promising.

In Table 1.2 we present empirical sizes of the slope-based test associated with the associated

individual hypotheses H0 : δθ = 0 (DGP1) and H0 : δρ = 0 (DGP2). Here we provide ex-

act asymptotic critical values for the untrimmed tests based on asymptotic critical values from

supτ |BB(τ)| (with supτ

√
(HT ∆ (r))′

(
HV̂ 2H ′

)−1
HT ∆ (r)

d
=⇒ supτ |BB(τ)| with H = (1 : 0)

and (0 : 1), respectively); for ε > 0 we use Estrella (2003) with p = 1.

Insert Table 1.2 around here

The empirical sizes of the individual coeffi cient tests are comparable for δθ and δρ and both are

of the same order of magnitude as the joint test size. With n = T = 100, the size of our tests

for homogeneity of the individual slope coeffi cient θ equals 0.051, 0.052, 0.051 and 0.043 for the
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four spatial dependence scenarios respectively, while the size of our tests for homogeneity of the

individual slope coeffi cient ρ equals 0.053 0.049, 0.053 and 0.039 respectively. The rejection rates

for the untrimmed tests based on the asymptotic values of the supremum of the Browning bridge

are generally larger than the rejection rates for the trimmed tests relying on Estrella’s exact

asymptotic critical values. This in typically also the case for the rejection rates associated with

the bootstrap algorithms.

Tables 1.3 and 1.4 present the power of our tests for DGP1 with δθ = 0.5 and δρ = 0, that is

where we only have a break in the slope of the strictly exogenous variable zit, when the break is

either in the middle, t0 = [0.5T ], or in the second half of the sample, τ0 = [0.8T ]. In Table 1.3

the power of the joint test is presented for the CUSUM test, Tε, and the slope-based test, T ∆
ε ,

while in Table 1.4, the power (size) of the individual components in the slope-based test is given.

The columns labelled θ report the rejection rates associated with H0 : δθ = 0 while the columns

labelled ρ report the rejection rates associated with H0 : δρ = 0. Given that we only consider

a break in θ here, the column labelled θ presents the power of its detection (δθ 6= 0), while the

column labelled ρ presents the size of H0 : δρ = 0. In Table 1.3, we observe that even with small

sample sizes our tests have high power in detecting a break in θ.

Insert Table 1.3 around here

As expected, the power is lower when the break lies closer to the end of the sample. Using the

Efron bootstrap algorithm the power is 0.988 for T0.10 and 0.843 for T ∆
0.10 in the absence of spatial

dependence when the break lies in the middle of the sample, against 0.893 for T0.10 and 0.685

for T ∆
0.10 when the break lies towards the end of the sample. Moreover, the power decreases with

the cross-sectional dependence. The power of the Tε test generally is higher than T ∆
ε test using

the bootstrap based critical values. Nevertheless, when focussing on the power associated with

the single coeffi cient test (H0 : δθ = 0), the T ∆
ε test again performs comparable to the Tε test in

detecting the break in θ. In Table 1.4 we observe that the power associated with a break in θ in

the middle of the sample for this example equals 0.820 for T ∆
0 (the associated size for a break in

ρ is 0.034), which compares well with 0.880 for the CUSUM based test.

Insert Table 1.4 around here

Clearly the power of an individual coeffi cient based test for a single break is higher than the power

of a joint coeffi cient based test. When both n and T equal 100, the power of the tests (joint Tε
and T ∆

ε and individual for T ∆
ε ) equals 1 for all but the strong spatial dependence setting in which

case it is close to one. Finally, the empirical power of our tests based on the Efron bootstrap

typically exceeds the Wild bootstrap based ones as expected.

Tables 1.5 and 1.6, by symmetry, present the power of our tests for DGP2 with δρ = 0.15 and

δθ = 0, that is where we only have a change in the number of lags of the endogenous variable,

again for the case where the break is either in the middle, t0 = [0.5T ], or in the second half of the

sample, τ0 = [0.8T ].

Insert Tables 1.5 and 1.6 around here



INFERENCE AND HOMOGENEITY IN LARGE DYNAMIC PANELS 27

In Table 1.5, the power of the joint test is presented for the CUSUM test and the slope-based

test, while in Table 1.6, the power (size) of the individual components of the slope-based test

is given. Given that we only consider a break in the number of lags of the endogenous variable

here, the power of its detection is in the column labelled ρ while the column labelled θ reports

the size of H0 : δθ = 0. In Table 1.5, we observe that for both tests, the power of detecting a

break in the number of lags of the endogenous variable is smaller than the power of a break in

the slope of the strictly exogenous regressor. For example, in the presence of exponential weak

dependence and small samples (n = T = 25), T0 reveals only a 0.151 power of detecting a break

in ρ against the 0.880 power of detecting a break in θ. From the results it is clear, that in order

to detect a change in the number of lags of the endogenous variable, we require a larger sample

size (either in the time or cross-sectional dimension). The power of the Tε test generally is again
higher than T ∆

ε test using the bootstrap based critical values, a difference which is reduced when

focussing on the power associated with the single coeffi cient test (H0 : δρ = 0). For n = T = 100,

we observe that the loss in power of detecting a break in the number of lags of the endogenous

variable increases with the amount of spatial dependence. Using T ∆
0 , the power of detection based

on the Efron bootstrap drops from 0.981 in absence of spatial dependence, to 0.884 and 0.696 in

the weak spatial dependence setting to 0.230 in the strong spatial dependence setting.

In the second set of simulations (Tables 2.1-2.3) we reveal the robustness of the results to the

presence of individual fixed effects ηi in the strictly exogenous regressor zit.
2 In Table 2.1 we

observe that the presence of fixed individual heterogeneity in the strictly exogenous regressor has

no big impact on the size of our tests.

Insert Table 2.1 around here

While the coeffi cient based test, T ∆
ε , seems to be most sensitive to the introduction of fixed

individual heterogeneity, the impact is not unidirectional. Based on the asymptotic critical values,

it does increase the power of detecting a break in θ of both tests, more significantly so for the

CUSUM based test (see Table 2.2).

Insert Table 2.2 around here

In the presence of polynomial weak spatial dependence for small samples (n = T = 25), the power

of T0.10 for a break in the middle of the sample becomes 0.798 (up from 0.310) and the power of

T ∆
0.10 becomes 0.836 (up from 0.467) based on the asymptotic critical values. The rejection rates

of Tε based on the bootstrap algorithms follows the same pattern. While similarly increasing the
power of the untrimmed coeffi cient based test, T ∆

0 , the presence of fixed individual heterogeneity

in zit reduces the power of T ∆
ε for ε = 0.05 and 0.10 dramatically when n is small, i.e., when

n = 25. For larger sample sizes, nevertheless, we detect a break in θ with probability 1 in all

settings. The power associated with detecting a change in the number of lags of the endogenous

2Tables for individual slope based test for these and later simulations are not reported but are available upon

request.
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variables (Table 2.3) reveals a similar response to the introduction of the individual heterogeneity

in zit as the power associated with detecting a break in θ, be it less pronounced.

Insert Table 2.3 around here

The results suggest that our tests are robust to the presence of fixed individual heterogeneity in

zit. In the remainder of the simulations we have left fixed individual heterogeneity in the strictly

exogenous regressor out.

In the third set of simulations (Tables 3.1-3.3), we introduce heterogeneity (random) in uit and

zit while we continue to ignore time dependence in zit. The presence of heterogeneity in uit and

zit has little (no unidirectional) impact on the size of our tests as can be seen from Table 3.1.

Insert Table 3.1 around here

Table 3.2 reveals that the introduction of this heterogeneity typically reduces the power of our

tests of detecting a break in θ in small samples. Only in the presence of strong dependence is the

power of detection of a break in θ enhanced by the heterogeneity.

Insert Table 3.2 around here

The rejection rates for detecting a break in the middle of the sample (n = T = 100) using T0

increases to 0.556 (up from 0.378) in the presence of strong dependence; in the absence of spatial

dependence heterogeneity using T0 decreases the power of detection in the middle of the sample

to 0.870 (down from 0.998) with a slightly attenuated loss in the presence of polynomial weak

dependence where the power reduces to 0.739 (down from 0.797). While the impact on the power

using asymptotic critical values generally is stronger for the CUSUM based test, Tε, relative to the
coeffi cient based test, T ∆

ε , the reverse holds when using bootstrapped critical values. Again, with

larger samples sizes n = T = 100 the break in θ is detected with probability 1 for all specifications.

The power of our tests to detect a change is the number of lags of the endogenous variable in

small samples typically is reduced in the presence of heterogeneity as well, more so when the break

lies further towards the end of the sample, see Table 3.3. Only in the presence of strong spatial

dependence, does the presence of heterogeneity improve the power of detecting in a change in the

number of lags of the endogenous variable in small samples (n = T = 25).

Insert Table 3.3 around here

In the last set of simulations (Tables 4.1-4.6), we introduce time dependence in zit. In Table

4.1, we provide the empirical size of our test in the presence of individual-heterogeneous autore-

gressive time dependence (ρzi ∼ IIDU [0.05, 0.95]). Here we consider only the settings of absence

of cross-sectional dependence and weak spatial dependence as suggested by Lee and Robinson

(2013). In Tables 4.2 and 4.3 we provide the associated power of our test for DGP1 and DGP2 in

this setting respectively. From Table 4.1 we observe that the size of our tests, either based on as-

ymptotic critical values or our bootstrap algorithms, remain largely unaffected by the introduction

of individual-heterogeneous autoregressive time dependence of the regressor zit.

Insert Table 4.1 around here
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In Table 4.2 we notice a slight reduction in the power of our tests in detecting a break in θ in small

samples which is slightly more pronounced for the coeffi cient based test, T ∆
ε . In the absence of

spatial dependence, the power of our tests for detecting a break in θ (n = T = 25) in the second

half of the sample using the Efron bootstrap become 0.858 (down from 0.893) for T0.10 versus

0.557 (down from 0.685) for T ∆
0.10.

Insert Table 4.2 around here

The deterioration is similar whether there is weak spatial dependence or not. In the presence of

weak spatial dependence the associated powers become 0.460 (down from 0.523) for T0.10 versus

0.183 (down from 0.280) for T ∆
0.10. On the other hand, as we observe from Table 4.3, the power

of our tests in detecting a break in the number of lags of the endogenous variable is enhanced

by the introduction of time dependence, with the effect potentially somewhat diminished in the

presence of weak spatial dependence.

Insert Table 4.3 around here

In the presence of weak spatial dependence the power of our tests detecting a break in ρ in the

middle of the sample using the Efron bootstrap become 0.277 (up from 0.151) for T0 versus 0.179

(up from 0.108) for T ∆
0 . In absence of spatial dependence the comparable numbers are 0.558 (up

from 0.273) for T0 versus 0.424 (up from 0.222) for T ∆
0

In Table 4.4, we provide the empirical size of our test in the presence of individual-homogenous

autoregressive time dependence (ρzi = 0.5 and ρzi = 0.9) under weak (polynomial decay) or strong

cross-sectional dependence. In Tables 4.5 and 4.6 we again provide the associated power for DGP1

and DGP2 respectively. From Table 4.4, we observe that even in the strong spatial dependence

setting, the size of our tests, either based on asymptotic critical values or our bootstrapped critical

values, remain largely unaffected by the introduction of time dependence of the regressor zit, where

here we consider individual-homogenous autoregressive time dependence.

Insert Table 4.4 around here

Only when the individual-homogenous autoregressive time dependence is very strong, i.e., ρz =

0.9, does the coeffi cient based test, T ∆
ε , seem to become less adequately sized when using the

bootstrapped critical values. This problem is more severe as the level of spatial dependence

increases, where in contrast the empirical size based on the asymptotic critical values approaches

the nominal rate earlier (n = T = 100). In Table 4.5, we observe that in the presence of weak

spatial dependence, an increase in the time dependence in the regressor lowers the power of

detecting a break in the middle (and end) of the sample.

Insert Table 4.5 around here

For (n = T = 25), the power based on the Efron bootstrap of T0 detecting a such a break in θ goes

from 0.797, 0.411 to 0.338 when ρz increases from 0, 0.5 to 0.9;
3 for T ∆

0 , the power correspondingly

decreases from 0.438, 0.329 to 0.151. In the presence of strong spatial dependence the effect is

3The power associated with ρz = 0 can be found in Table 1.3.
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not unidirectional, in fact the largest power is typically detected when ρz = 0.5 relative to ρz = 0

and 0.9, and the smallest typically for ρz = 0.9. Finally, as can be seen from Table 4.6 the power

of detecting a break in the number of lags of the endogenous variable generally of the CUSUM

based test, Tε, increases with the level of time dependence in the regressor.

Insert Table 4.6 around here

For instance for small samples (n = T = 25), based on the Efron bootstrap, the power of T0

detecting a such a break in ρ in the presence of weak spatial dependence goes from 0.131, 0.192 to

0.295 when ρz increases from 0, 0.5 to 0.9;
4 in the presence of strong spatial dependence the power

correspondingly increases from 0.090, 0.128 to 0.162. The impact on the power of the coeffi cient

based test, T ∆
ε , is less clear when the sample is small (n = T = 25). Considering the larger

sample (n = T = 100), it is clear that the power of the coeffi cient based test is also enhanced by

the stronger time dependence in the regressor for both the weak and strong spatial dependence

setting regardless of whether asymptotic or bootstrapped critical values are used.

6. CONCLUSIONS AND EXTENSIONS

The paper has examined several issues related to inference in large dynamic panel data models.

Specifically, we have developed a Central Limit Theorem for the estimators of the slope parameters

when the errors and the covariates might exhibit “strong” cross-sectional dependence. To that

end, we have modified existing results given in Phillips and Moon (1999) to allow for dependence in

both time and cross-section dimensions. From here, we have described and examined two different,

but similar, tests for the null hypothesis of homogeneity of the slope parameters of the model.

Because the small sample properties of the test were not very satisfactory, we have described

two bootstrap algorithms with the attractive feature that their implementation does not require

any previous knowledge of the cross-sectional dependence or selection of any tuning/bandwidth

parameters (as is normally the case when using moving block bootstraps with time series data).

A possible limitation of the conditions we imposed is that it rules out temporal dependence for

the errors. That is, we might want to change C1 to

C1′: {uit}t∈Z, i ∈ N+, are linear sequences of zero mean random variables given by

uit =
∞∑
`=0

a` (i) εi,t−`;
∞∑
`=0

|a`| `1/2 <∞,

where a` = supi∈N |a` (i)|, and {εit}t∈Z, i ≥ 1, are sequences of independent distributed

random variables satisfying supi∈NE
(
ε4
it

)
= supi∈N µi <∞ and

lim
T↗∞

sup
i∈N+

T∑
t1,t2,t3=1

|Cum (uit1;uit2;uit3;ui0)| <∞.

When we change C1 to C1′, inspections of our proofs suggests the main qualitative results of the

paper would follow, all we need to do would be to employ instrumental variable methods or some

type of Hatanaka’s “effi cient” estimator to estimate the parameters of the model. We have not

4The power associated with ρz = 0 can be found in Table 1.5.
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followed this route for notational simplicity as our basic conclusions should not be affected, except

that the proofs would become lengthier. The change, though, would necessitate a modification of

our bootstrap algorithm to accommodate the temporal dependence of the errors {uit}t∈Z, i ∈ N+,

and the estimator of the long run variance V 1. Details of this are beyond the scope of this paper

and we hope to address these issues in a different paper.

7. APPENDIX

7.1. PROOF OF THEOREM 1.
We begin by giving two intermediate lemmas, the first of which extends a Central Limit The-

orem result given in Phillips and Moon’s (1999) Theorem 2 when the independence condition

fails.

Lemma 1. Assume that
1

n1/2

n∑
i=1

x̊ituit
d→ N (0,V1) , (7.1)

where (i) {x̊it}t∈Z, i ∈ N, are sequences of random variables such that

x̊it =
∞∑
`=0

ψ`ξi,t−`,
∞∑
`=0

|ψ`| `1/a <∞, 0 < a < A <∞,

with {ξit}t∈Z, i ∈ N, being iid zero mean sequences with finite fourth moments and (ii) {uit}t∈Z,
i ∈ N, are iid sequences of random variables with finite fourth moments that are mutually inde-

pendent of {ξit}t∈Z. Then, we have

1

T 1/2

T∑
t=1

1

n1/2

n∑
i=1

x̊ituit
d→ N (0,V1) , (7.2)

as n, T →∞.

Proof. The proof is quite standard using time series techniques and the Bernstein’s lemma. Ob-

serve that we cannot use Phillips and Moon’s (1999) Theorem 2 as the latter result requires that

the left side of (7.1) forms a sequence of independent random variables in the “t”dimension.

Suppose for the moment that for all i ∈ N+, the sequences {x̊it}t∈Z follow an MA (p) process

for some finite p. If that were the case, we could write (7.2) as

1

T̊ 1/2

T̊∑
t=1

1

k1/2

k−p∑
j=1

1

n1/2

n∑
i=1

x̊i,k(t−1)+jui,k(t−1)+j

+
1

T̊ 1/2

T̊∑
t=1

1

k1/2

p∑
j=1

1

n1/2

n∑
i=1

x̊i,tk−p+jui,tk−p+j (7.3)

= :
1

T̊ 1/2

T̊∑
t=1

1

k1/2

k−p∑
j=1

X̊j,t (1) +
1

T̊ 1/2

T̊∑
t=1

1

k1/2

p∑
j=1

X̊j,t (2) ,
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for some k > 2p and where, for notational simplicity, we have assumed that T = kT̊ . The second

moment of the second term on the right of (7.3) equals

1

T̊

T̊∑
t=1

1

k

p∑
j1,j2=1

E
(
X̊j1,t (2) X̊j2,t (2)

)
= O (p/k) ,

because by assumption, X̊j,t (2) has finite second moments and is independent of X̊j,s (2) for t 6= s.

Next, denoting ztn = k−1/2
∑k−p

j=1 X̊j,t (1), the first term on the right of (7.3) is

1

T̊ 1/2

T̊∑
t=1

ztn,

which converges in distribution to a normal random variable by Phillips and Moon’s (1999)

Theorem 2 because ztn and zsn are independent and identically distributed sequences in t with

finite second moments, so that they are uniformly integrable (observe that {x̊it}t∈Z follows an
MA (p)), so that condition (3.20) in Phillips and Moon (1999) holds true. The conclusion of the

lemma would now follow by using Bernstein’s lemma.

We next examine the general case when {x̊it}t∈Z follows anMA (∞). The proof follows similarly

after we employ the usual truncation of the sequence x̊it. To that end, let

x̊it =

p∑
`=0

ψ`ξi,t−` +
∞∑

`=p+1

ψ`ξi,t−`

= x̊′it + x̊′′it.

Because for any fixed p, we have that the sequence {x̊′it}t∈Z behaves as a MA (p) sequence, in

view of the arguments previously given, it suffi ces to establish that the contribution of x̊′′it into

(7.2) is negligible. Indeed, this is the case because by definition,

1

T 1/2

T∑
t=1

1

n1/2

n∑
i=1

x̊′′ituit =
1

T 1/2

T∑
t=1

∞∑
`=p+1

ψ`
1

n1/2

n∑
i=1

ξi,t−`uit,

which second moment is

1

T

T∑
t,s=1

∞∑
`1,`2=p+1

ψ`1ψ`2
1

n
E

 n∑
i=1

ξi,t−`1uit

n∑
j=1

ξj,s−`2ujs


=

C

T

T∑
t,s=1

∞∑
`=max(0,t−s)+p+1

∣∣ψ`ψ`+s−t∣∣
≤ C

∞∑
q1=p+1

∞∑
q2=p+1

∣∣ψq1ψq2∣∣ = O
(
p−2/a

)
.

Now we choose p large enough to conclude that the behaviour of (7.2) is given by that of

1

T 1/2

T∑
t=1

1

n1/2

n∑
i=1

x̊′ituit

and hence the proof of the lemma is completed by appealing again to Bernstein’s lemma. �
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Remark 6. There is no doubt that the conditions of the previous lemma can be weakened. Indeed
a close inspection of the proof suggests that the condition that (7.1) is not used in a significant

way. However, since we shall show that under our Conditions C1 − C3, (7.1) indeed converges

in distribution to a Gaussian random variable, and since our purpose is to illustrate how we can

relax the independence condition in Phillips and Moon (1999) or Hahn and Kürsteiner (2002),

and thereby to modify their CLT, we have preferred to keep them to allow us to use, somehow,

standard arguments.

Remark 7. Given (7.1), the sequential limit of

1

T 1/2

[Tτ ]∑
t=1

1

n1/2

n∑
i=1

x̊ituit

will converge in distribution to a normal random variable with variance

lim
T→∞

1

T

[Tτ ]∑
t=1

lim
n→∞

E

(
1

n1/2

n∑
i=1

x̊ituit

)2

= τV1 (7.4)

as Condition C1 implies that for t 6= s,

Cov

(
1

n1/2

n∑
i=1

x̊ituit;
1

n1/2

n∑
i=1

x̊isuis

)
= 0.

Of course, the same arguments yields that

Cov

 1

T 1/2

[Tτ1]∑
t=1

1

n1/2

n∑
i=1

x̊ituit;
1

T 1/2

[Tτ2]∑
t=1

1

n1/2

n∑
i=1

x̊isuis

→ (τ1 ∧ τ2)V1.

Lemma 2. Under C2− C4, we have that, uniformly in τ ∈ [0, 1],

1

nT

[Tτ ]∑
t=1

n∑
i=1

x̃itx̃
′
it − τΣx = op (1) . (7.5)

Proof. First we show that we can replace x̃it by x̊it on the left side of (7.5). Indeed, after standard

algebra, we have that the difference equals

1

T

[Tτ ]∑
t=1

{(
1

n

n∑
i=1

x̊it

)(
1

n

n∑
i=1

x̊′it

)}
.

Now, by the triangle inequality we obtain that

E sup
τ∈[0,1]

∥∥∥∥∥∥ 1

T

[Tτ ]∑
t=1

(
1

n

n∑
i=1

x̊it

)(
1

n

n∑
i=1

x̊′it

)∥∥∥∥∥∥ ≤ 1

T

T∑
t=1

E

∥∥∥∥∥ 1

n

n∑
i=1

x̊it

∥∥∥∥∥
2

= o (1) ,

by C2. So, to complete the proof of the lemma, it remains to show that uniformly in τ ∈ [0, 1],

1

nT

n∑
i=1

[Tτ ]∑
t=1

(
x̊itx̊

′
it

)
− τΣx = op (1) . (7.6)
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Now, for a fixed τ ∈ [0, 1], we have that standard arguments imply that (7.6) holds true. So,

it remains to show that the left side of (7.6) is tight. By Billingsley’s (1968) Theorem 12.1, it

suffi ces to show the moment condition

E

 1

nT

n∑
i=1

[Tτ2]∑
t=[Tτ1]+1

υit

2

≤ C (τ2 − τ1)1+ξ (7.7)

for some ξ > 0 where υit denotes a typical component of the matrix x̊itx̊′it − Σx,i. The last

displayed inequality holds as C2 implies that the left side is bounded by

C

n2T 2

n∑
i,j=1

[Tτ2]∑
t,s=[Tτ1]+1

|Cov (υit; υjs)| ≤
C

n2T 2

n∑
i,j=1

ϕυ (i, j)

[Tτ2]∑
t,s=[Tτ1]+1

|Cov (υit; υis)|

= o

(
τ2 − τ1

T

)
,

due to the separability of the dependence structure |Cov (υit; υjs)| ≤ C |ϕυ (i, j)| |Cov (υit; υis)|.
This concludes the proof of Lemma 2 by taking ξ = 1 in (7.7) because T−1 ≤ (τ2 − τ1). �

We now turn to the proof of Theorem 1 itself.

Proof. It is clear that, in view of Lemma 1, it suffi ces to show that (7.1) holds true. That is,

εn =
1

n1/2

n∑
i=1

x̊iui
d→ N (0,V 1) ,

where we have suppressed the subindex t for notational simplicity. Next C1 implies that we can

write εn as

εn =
1

n1/2

n∑
i=1

x̊i

∞∑
j=0

aj (i) εj

= ε1,n + ε2,n,

where denoting ẍj (n) =
∑n

i=1 x̊iaj (i),

ε1,n =
1

n1/2

N∑
j=0

ẍj (n) εj ; ε2,n =
1

n1/2

∞∑
j=N+1

ẍj (n) εj ,

with N large enough and to be chosen later.

The proof of the theorem will be completed if (a) E
(
ε2,nε

′
2,n

)
= o (1); (b) ε1,n satisfies a Central

Limit Theorem and (c) Ξ1 − Ξ0 = op (1), where

Ξ0 = E
(
εnε
′
n | {xi}

n
i=1

)
> 0; Ξ1 = E

(
ε1,nε

′
1,n | {xi}

n
i=1

)
> 0,

as Lemma 2 implies that n−1
∑n

i=1 (̊xix̊
′
i − Σx,i) = op (1).
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We begin with (a). By C1 and C2, we obtain that

E
(
ε2,nε

′
2,n

)
=

σ2
ε

n

∞∑
j=N+1

E

[(
n∑
i=1

x̊iaj (i)

)(
n∑
i=1

x̊iaj (i)

)′]

=
σ2
ε

n

∞∑
j=N+1

n∑
i,k=1

ϕx (i, k) aj (i) aj (k)

=
σ2
ε

n

n∑
i,k=1

ϕx (i, k)ϕu (i, k)

∑∞
j=N+1 aj (i) aj (k)

ϕu (i, k)
.

The right side of the last displayed equality is bounded byσ2
ε

n

n∑
i,k=1

ϕx (i, k)ϕu (i, k)

 sup
i,k=1,...,n

∑∞
j=N+1 aj (i) aj (k)

ϕu (i, k)

≤ C sup
i,k=1,...,n

∑∞
j=N+1 aj (i) aj (k)

ϕu (i, k)
(7.8)

given C3. But using (2.1) and Cauchy-Schwarz’s inequality, the right side of (7.8) can be made as

small as we want by choosing N suffi ciently large. As a by-product we can immediately conclude

also that Ξ0 − Ξ1 = op (1), i.e. part (c).

It remains to examine part (b). To that end, we shall make use of a result by Scott (1973) that

ensures that conditionally on {xi}ni=1, we have that 1

n

N∑
j=0

ẍj (n) ẍ′j (n)

−1/2

1

n1/2

N∑
j=0

ẍj (n) εj
d→ N

(
0, σ2

εIk
)
.

Recall that if this is the case, as the limiting distribution does not depend on {xi}ni=1, it implies

that the wording conditional can be changed to unconditional.

Using the Cramèr-Wold device, according to Scott (1973) , the latter holds true if the suffi cient

conditions

(i)

N∑
j=0

ϑ2
j (n)Eε2

j
P→ σ2

ε,

(ii) E

N∑
j=0

ϑ2
j (n)E

(
ε2
jI
(
ϑ2
j (n) ε2

j > η
))
→ 0 for all η > 0,

where ϑj (n) =
(∑N

j=0 c
′ẍj (n) ẍ′j (n) c

)−1/2
c′ẍj (n) , are satisfied for all c for which c

′
(

1
n

∑N
j=0 ẍj (n) ẍ′j (n)

)
c 6=

0,. Having dropped the conditional expectation in {xi}ni=1 for notational simplicity, we notice that

(ii) is some type of Lindeberg’s condition. Now condition (i) follows trivially in view of C1, since

by construction
N∑
j=0

ϑ2
j (n) = 1.
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So, we need to examine part (ii). By standard inequalities, the left side is bounded by

E

N∑
j=0

ϑ2
j (n)E

(
ε2
jI (|εj | > η/δ)

)
+ Pr

{
sup
j≥1
|ϑj (n)| > δ

}
. (7.9)

The first term of (7.9) converges to zero in probability by Uniform Integrability of the sequence{
ε2
j

}
j∈N
. The second term of (7.9) also converges to zero as we show next. First, suppose that

1

n

N∑
j=0

ẍj (n) ẍ′j (n)
P→ Ξ > 0, (7.10)

then it suffi ces to show that

sup
j≥1

∥∥∥∥ ẍj (n)

n1/2

∥∥∥∥2

= sup
j≥1

∥∥∥∥∥ 1

n1/2

n∑
i=1

x̊iaj (i)

∥∥∥∥∥
2

= op (1) . (7.11)

By Condition C2, we know that we can choosem large enough such that supj≥1

∑n
i=m+1 |aj (i)|2 <

ε. So, the left side of (7.11) is bounded by

sup
j≥1

∥∥∥∥∥ 1

n1/2

m∑
i=1

x̊iaj (i)

∥∥∥∥∥
2

+ sup
j≥1

∥∥∥∥∥ 1

n1/2

n∑
i=m+1

x̊iaj (i)

∥∥∥∥∥
2

≤ m

n1/2

(
sup
i
E ‖x̊i‖4

)1/4

sup
i,j
|aj (i)|+ 1

n

n∑
i=m+1

‖x̊i‖2
(

sup
j≥1

n∑
i=m+1

|aj (i)|2
)

< ε.

To finish the proof of part (b), it remains to show (7.10). By definition of ẍj (n) , the left side

in (7.10) is

1

n

N∑
j=0

n∑
i=1

x̊iaj (i)
n∑
`=1

x̊′`aj (`) =
1

n

n∑
i,`=1

x̊ix̊
′
`

N∑
j=0

aj (i) aj (`) .

Now, proceeding as with (7.8), it follows that it suffi ces to show that

1

n

n∑
i,`=1

(
x̊ix̊
′
` − ϕx (i, `)

)
ϕu (i, `) = op (1) .

The second moment of the left side of the last displayed equality is

1

n2

n∑
i1,...,i4=1

ϕx (i1, i3)ϕx (i2, i4)ϕu (i1, i2)ϕu (i3, i4)

+
1

n2

n∑
i1,...,i4=1

ϕx (i1, i4)ϕx (i2, i3)ϕu (i1, i2)ϕu (i3, i4) (7.12)

1

n2

n∑
i1,...,i4=1

cum (̊xi1 , x̊i2 , x̊i3 , x̊i4)ϕu (i1, i2)ϕu (i3, i4) .
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Now using expression (16) in Lee and Robinson (2013), we obtain that the first two terms of

(7.12) are bounded by

C
1

n2

n∑
i1,i2=1

ϕ2
x (i1, i2)

max
1≤i≤n

n∑
j=1

ϕu (i, j)

2

= o (1) ,

using (2.4) and its consequence obtained in (2.6) . Using C2, the third term of (7.12) is equal to

C

n2

n∑
i1,...,i4=1

{
ϕu (i1, i2)ϕu (i3, i4)

∞∑
`=1

b` (i1) b` (i2) b` (i3) b` (i4)

}
= o (1)

because max1≤i≤n
∑n

j=1 ϕ
2
u (i, j) < C and max`≥1

∑n
i=1 ‖b` (i)‖2 < C. This completes the proof

of the theorem. �

7.2. PROOF OF PROPOSITION 1.

Proof. For notational simplicity, assume that x̃it is scalar. Then, by definition and using standard

algebra, we obtain

V̂ 1 −V 1 =
1

T

T∑
t=1

{
1

n1/2

n∑
i=1

x̃itũit −
(
β̂FE − β

) 1

n1/2

n∑
i=1

x̃2
it

}2

−V 1

=
1

T

T∑
t=1

{
1

n1/2

n∑
i=1

x̃ituit

}2

+
(
β̂FE − β

)2 1

T

T∑
t=1

{
1

n1/2

n∑
i=1

x̃2
it

}2

−2
(
β̂FE − β

) 1

T

T∑
t=1

{
1

n1/2

n∑
i=1

x̃ituit

}{
1

n1/2

n∑
i=1

x̃2
it

}
−V 1 (7.13)

=

 1

T

T∑
t=1

{
1

n1/2

n∑
i=1

x̃ituit

}2

−V 1

+ op (1) ,

because Theorem 1 implies that β̂FE − β = Op
(
n−1/2T−1/2

)
and by Markov’s inequality,(

E

{
1

n1/2

n∑
i=1

x̃ituit

}{
1

n

n∑
i=1

x̃2
it

})2

≤ E
{

1

n1/2

n∑
i=1

x̃ituit

}2

E

{
1

n

n∑
i=1

x̃2
it

}2

≤ C.

Now, the term in square brackets on the far right of (7.13) is

1

T

T∑
t=1

{ 1

n1/2

n∑
i=1

x̃ituit

}2

−
{

1

n1/2

n∑
i=1

x̊ituit

}2


+
1

T

T∑
t=1

{ 1

n1/2

n∑
i=1

x̊ituit

}2

− E
{

1

n1/2

n∑
i=1

x̊ituit

}2
 (7.14)

+
1

T

T∑
t=1

E

{
1

n1/2

n∑
i=1

x̊ituit

}2

−V 1,
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which converges in probability to zero as we now show. Indeed, by definition, the first line of

(7.14) is

1

T

T∑
t=1

{
1

n1/2

n∑
i=1

uit

}2{
1

n

n∑
i=1

x̊it

}2

(7.15)

− 2

T

T∑
t=1

{
1

n1/2

n∑
i=1

uit

}{
1

n

n∑
i=1

x̊it

}{
1

n1/2

n∑
i=1

x̊ituit

}
.

The expectation of the first term of (7.15) is

E

{
1

n1/2

n∑
i=1

uit

}2

E

{
1

n

n∑
i=1

x̊it

}2

=
1

n

n∑
i,j=1

ϕu (i, j)
1

n2

n∑
i,j=1

ϕx (i, j)

= o (1)

by C3, while the second term of (7.15) has absolute moment bounded by

2

T

T∑
t=1

E{ 1

n1/2

n∑
i=1

uit

}2

E

{
1

n

n∑
i=1

x̊it

}2
1/2E{ 1

n1/2

n∑
i=1

x̊ituit

}2
1/2

using Cauchy-Schwarz’s inequality. Since Theorem 1 and Serfling (1980) ensure that E ‖
∑n

i=1 x̊ituit‖
2 =

O (n) as ‖
∑n

i=1 x̊ituit‖
2 is Uniformly Integrable, we obtain that the last displayed expression is

also o (1) by the same argument we used for the first term. By Markov’s inequality, we then

conclude that (7.15) = op (1). The last two terms of (7.14) are op (1) by standard arguments,

which completes the proof of the proposition. �

7.3. PROOF OF THEOREM 2.

Proof. Because of the results of Theorem 1 and Cràmer-Wold’s arguments, it remains to show

the tightness condition. We shall begin with part (a). First, by Lemma 2,

1

(nT )1/2

[Tτ ]∑
t=1

n∑
i=1

x̃it

(
ỹit − β̂

′
FE x̃it

)

=
1

(nT )1/2

[Tτ ]∑
t=1

n∑
i=1

x̃ituit − τ
T∑
t=1

n∑
i=1

x̃ituit

 (1 + op (1)) , (7.16)

where the op (1) is uniformly in τ ∈ (0, 1). Now using (2.9), we have that standard algebra implies

that the first term on the right of (7.16) is

1

(nT )1/2

[Tτ ]∑
t=1

n∑
i=1

x̊it (`)uit +
1

(nT )1/2

[Tτ ]∑
t=1

(
n1/2x̊·t (`)

)(
n1/2u·t

)
(7.17)

with x̊it (`) denoting the `th element of x̊it. Define

Xn,T (τ) =
1

(nT )1/2

[Tτ ]∑
t=1

(
n1/2x̊·t (`)

)(
n1/2u·t

)
. (7.18)
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By C1− C3, we obtain that

E (Xn,T (τ2)− Xn,T (τ1))2 =
1

(nT )
E

 [Tτ2]∑
t=[Tτ1]+1

(
n1/2x̊·t (`)

)(
n1/2u·t

)2

≤ C
τ2 − τ1

n

≤ C (τ2 − τ1)1+ξ

where ξ is such that T ξ = o (n) and, as usual, we can take T−1 ≤ (τ2 − τ1). Recall that C1

ensures that E (u·tu·s) = 0 ∀t 6= s. This ensures that Xn,T (τ) is tight. As its finite distribution

converges to zero in probability, we conclude that the second term of (7.17), i.e. Xn,T (τ) is op (1)

uniformly in τ ∈ [0, 1].

So, we have that the first term on the right of (7.16) is governed by the first term of (7.17).

Likewise, the second term on the right of (7.16) is governed by

τ

(nT )1/2

T∑
t=1

n∑
i=1

x̊it (`)uit,

which implies that it suffi ces to examine the tightness of

1

(nT )1/2

[Tτ ]∑
t=1

n∑
i=1

x̊it (`)uit − τ
T∑
t=1

n∑
i=1

x̊it (`)uit

 .
We now show that the last displayed expression is tight. Indeed, using C1 we obtain that

E


 1

T 1/2

[Tτ2]∑
t=[Tτ1]+1

1

n1/2

n∑
i=1

x̊it (`)uit

2 1

T 1/2

[Tτ3]∑
t=[Tτ2]+1

1

n1/2

n∑
i=1

x̊it (`)uit

2
= E

 1

T 1/2

[Tτ2]∑
t=[Tτ1]+1

1

n1/2

n∑
i=1

x̊it (`)uit

2

E

 1

T 1/2

[Tτ3]∑
t=[Tτ2]+1

1

n1/2

n∑
i=1

x̊it (`)uit

2

≤ C (τ3 − τ1)2

since C1 implies, say, that

E

 1

T 1/2

[Tτ2]∑
t=[Tτ1]+1

1

n1/2

n∑
i=1

x̊it (`)uit

2

=
1

T

[Tτ2]∑
t=[Tτ1]+1

E

(
1

n1/2

n∑
i=1

x̊it (`)uit

)2

≤ C (τ2 − τ1) .

and (τ2 − τ1) (τ3 − τ2) ≤ (τ3 − τ1)2. This completes the proof of part (a).

We now focus on the proof of part (b). We shall first examine the behaviour of

X̆n,T (τ) =
(n
T

)1/2
[Tτ ]∑
t=1

(
β̂t − βt

)
.
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Denoting Σ̂x = 1
n

∑n
i=1 x̃itx̃

′
it, we have that

β̂t − βt = Σ−1
x

1

n

n∑
i=1

x̃ituit −
(

Σ−1
x − Σ̂−1

x

) 1

n

n∑
i=1

x̃ituit. (7.19)

The contribution of the second term on the right of (7.19) into X̆n,T (τ) is

1

T 1/2

[Tτ ]∑
t=1

Σ−1
x

(
Σx − Σ̂x

)
Σ−1
x

1

n1/2

n∑
i=1

x̃ituit (7.20)

+
1

T 1/2

[Tτ ]∑
t=1

Σ−1
x

(
Σx − Σ̂x

)(
Σ̂−1
x − Σ−1

x

) 1

n1/2

n∑
i=1

x̃ituit.

The second term of (7.20) is easily seen to be Op
(
T 1/2/n

)
uniformly in τ ∈ [0, 1], because C2 and

C4 imply that E
∥∥∥Σ̂x − Σx

∥∥∥2
= O

(
n−1

)
and E ‖

∑n
i=1 x̃ituit‖

2 = O (n) by Theorem 1.

We next examine the first term of (7.20). To that end, we note that it does not make a difference

whether we consider x̃it or x̊it. Now, because C1 implies that E (uitujs) = 0 if t 6= s, the second

moment of the first term of (7.20) is bounded by

λ−2 (Σx)

Tn3

[Tτ2]∑
t=1+[Tτ1]

E


n∑
i=1

{
x̊itx̊

′
it − Σx,i

} n∑
i,j=1

x̊itx̊
′
jtuitujt

 n∑
i=1

{
x̊itx̊

′
it − Σx,i

} , (7.21)

where λ (Σx) denotes the minimum eigenvalue of the matrix Σx. Now, by definition and C1− C3,

we have that the expectation term on the right of (7.21) is

n∑
i,j=1

ϕu (i, j)
n∑

k,`=1

E
{(
x̊2
kt − Σx,k

) (
x̊2
`t − Σx,`

)
x̊itx̊jt

}
=

n∑
i,j=1

ϕx (i, j)ϕu (i, j)
n∑

k,`=1

E
{(
x̊2
kt − Σx,k

) (
x̊2
`t − Σx,`

)}
+2

n∑
i,j=1

ϕu (i, j)
n∑

k,`=1

E
{(
x̊2
kt − Σx,k

)
x̊it
}
E
{(
x̊2
`t − Σx,`

)
x̊jt
}

(7.22)

+

n∑
i,j=1

ϕu (i, j)

n∑
k,`=1

Cum
(
x̊it; x̊jt; x̊

2
kt; x̊

2
`t

)
,

where for notational simplicity we have assumed xit scalar.

By standard algebra and C2, we have that

E
{(
x̊2
kt − Σx,k

) (
x̊2
`t − Σx,`

)}
= 2ϕ2

x (k, `) + Cum (̊xkt; x̊kt; x̊`t; x̊`t)

E
{(
x̊ktx̊

′
kt − Σx,k

)
x̊it
}

= E
(
ε3
jt

) ∞∑
j=0

b2j (k) bj (i) (7.23)

Cum
(
x̊it; x̊jt; x̊

2
kt; x̊

2
`t

)
= C

∞∑
s=0

bs (i) bs (j) b2s (k) b2s (`) .
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Thus, using (7.23) we conclude that the right of (7.22) is bounded by

C

n3−ς +
n∑

i,j=1

ϕu (i, j)
n∑

k,`=1

( ∞∑
c=0

b2c (k) bc (i)
∞∑
c=0

b2c (`) bc (j)

)

+
n∑

i,j=1

ϕu (i, j)
n∑

k,`=1

∞∑
s=0

bs (i) bs (j) b2s (k) b2s (`)

 ,
because

∑n
k,`=1 ϕ

2
x (k, `) = O

(
n2−ς) for some ς > 0.

From here, we obtain that (7.21) is proportional to

(τ2 − τ1)

(
1

nς
+

1

n1/2

)
, (7.24)

because
∑∞

c=0 b
2
c (k) < C,

∑n
i,j=1 ϕ

2
u (i, j) ≤ Cn and supc≥1

∑n
k=1 b

2
c (k) < C implies

n∑
i,j=1

ϕu (i, j)
n∑

k,`=1

( ∞∑
c=0

b2c (k) bc (i)
∞∑
c=0

b2c (`) bc (j)

)
≤ Cn5/2.

So we conclude that the first term of (7.20) converges to zero in probability uniformly in

τ ∈ [0, 1], since (7.24) indicates that (7.20) is tight.

So, we conclude that the contribution due to the second term on the right of (7.19) to Xn,T (τ)

is negligible, so that it remains to examine

X̃n,T (τ) = Σ−1
x

1

T 1/2

[Tτ ]∑
t=1

{
1

n1/2

n∑
i=1

x̃ituit

}
.

But X̃n,T (τ) is essentially (7.17), and hence proceeding as in part (a),

X̃n,T (τ)
weakly→ Σ−1

x V
1/2
1 B (τ) .

From here the proof of part (b) follows since X̆n,T (τ) = X̃n,T (τ)− τ X̃n,T (1) + op (1). �

7.4. PROOF OF PROPOSITION 3.

Proof. Part (a). Standard algebra implies that T † (r) in (3.9) is

1

(nT )1/2

[Tτ ]∑
t=1

n∑
i=1

x̊it

(
ẙit − β̂

′
FE x̊it

)
+ op (1)

asy
'

 1

(nT )1/2

[Tτ ]∑
t=1

n∑
i=1

x̊ituit − τ
1

(nT )1/2

T∑
t=1

n∑
i=1

x̊ituit


− 1

(nT )1/2

[Tτ ]∑
t=1

n∑
i=1

x̊itx̊
′
it


(

T∑
s=1

n∑
i=1

x̊isx̊
′
is

)−1 T∑
s=1

n∑
i=1

x̊isx̊
′
is (βs − βt)


+op (1) .
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Now, the second term on the right of the last displayed expression is asymptotically equivalent

to

− δ

nT

[Tτ ]∑
t=1

n∑
i=1

x̊itx̊
′
it

{
Σ−1
x

1

nT

T∑
s=1

n∑
i=1

x̊isx̊
′
isI (s > t0)− I (t > t0)

}

= δΣx
1

T

[Tτ ]∑
t=1

{I (t > t0)− (1− τ0)} (1 + op (1)) (7.25)

= δΣxΞ (τ) (1 + op (1)) ,

where Ξ (τ) is the shift function given in (3.12).

Part (b). The proof proceeds similarly to that of part (a), and is therefore omitted. �

7.5. PROOF OF THEOREM 4.

Proof. Our aim is to show that

1

T 1/2

[Tτ ]∑
t=1

1

n1/2

n∑
i=1

x̊itu
∗
it
d∗→ N (0, τV 1) (in probability). (7.26)

To simplify the notation, we shall examine the behaviour of a typical component, say the `th, of

the left side of (7.26). Observing that n−1/2
∑n

i=1 x̊it (`)u∗it is a sequence of independent random

variables, we have in view of Theorem 2 of Phillips and Moon (1999), that it suffi ces to show that

(i) E∗

 1

T 1/2

[Tτ ]∑
t=1

1

n1/2

n∑
i=1

x̊it (`)u∗it

2

P→ τV 1,``

(ii) E∗

(
1

n1/2

n∑
i=1

x̊it (`)u∗it

)4

= HTn,

where in what follows HTn is a sequence of Op (1) random variables. Note that (ii) is a suffi cient

condition for the Lindeberg’s condition.

We begin with (i). By definition, the left side of the expression in (i) is

1

T

[Tτ ]∑
t=1

1

n

n∑
i,j=1

{
x̊it (`) x̊jt (`)E∗

(
u∗itu

∗
jt

)}
(7.27)

=
1

T

[Tτ ]∑
t=1

1

n

n∑
i,j=1

{
x̊it (`) x̊jt (`)

1

T

T∑
s=1

(ûisûjs)

}
.

As usual, we shall only handle the case when ûit is replaced by uit, as the difference is of

a smaller probability order of magnitude. With this replacement in mind and using standard
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algebra, we have that the right side of (7.27) becomes

1

T

[Tτ ]∑
t=1

1

n

n∑
i,j=1

{x̊it (`) x̊jt (`)− ϕx (i, j)} 1

T

T∑
s=1

{uisujs − ϕu (i, j)}

+
1

T

[Tτ ]∑
t=1

1

n

n∑
i,j=1

ϕu (i, j) {x̊it (`) x̊jt (`)− ϕx (i, j)} (7.28)

+
1

T

[Tτ ]∑
t=1

1

n

n∑
i,j=1

ϕx (i, j)
1

T

T∑
s=1

{uisujs − ϕu (i, j)}

+
1

T

[Tτ ]∑
t=1

1

n

n∑
i,j=1

ϕx (i, j)ϕu (i, j) .

The last term of (7.28) converges to τV 1,``, so to complete the proof we need to show that the

first three terms of (7.28) converge to 0 in probability. Because the second and third terms are

similar, we shall only handle the third, which equals

τ

T

T∑
s=1

1

n

n∑
i,j=1

{ϕx (i, j) (uisujs − ϕu (i, j))} . (7.29)

The first moment of (7.29) is zero, while the second moment is

τ2

T 2

T∑
s=1

E

 1

n

n∑
i,j=1

ϕx (i, j) {uisujs − ϕu (i, j)}

2

which is

τ2

Tn2

n∑
i1,...,i4=1

ϕx (i1, i2)ϕx (i3, i4)ϕu (i1, i3)ϕu (i2, i4)

+
τ2

Tn2

n∑
i1,...,i4=1

ϕx (i1, i2)ϕx (i3, i4)ϕu (i1, i4)ϕu (i2, i3)

+
τ2

Tn2

n∑
i1,...,i4=1

ϕx (i1, i2)ϕx (i3, i4) cum (ui11;ui21;ui31;ui41) .

The first two terms on the right of the last displayed expression converge to zero proceeding as

with the proof of (7.10), whereas C1 implies that the last term is

κε,4τ
2

Tn2

n∑
i1,...,i4=1

ϕx (i1, i2)ϕx (i3, i4)
∞∑
`=1

a` (i1) a` (i2) a` (i3) a` (i4) .

Now using C1 and C3, we conclude that the last displayed expression is o (1), which concludes

the proof of part (i).
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We now turn to part (ii). By definition, we have

E∗

(
1

n1/2

n∑
i=1

x̊itu
∗
it

)4

=
1

n2

n∑
i1,...,i4=1

x̊i1t (`) x̊i2t (`) x̊i3t (`) x̊i4t (`)
1

T

T∑
s=1

ûi1sûi2sûi3sûi4s

' 1

n2

n∑
i1,...,i4=1

x̊i1t (`) x̊i2t (`) x̊i3t (`) x̊i4t
1

T

T∑
s=1

ui1sui2sui3sui4s

=
1

T

T∑
s=1

(
1

n1/2

n∑
i=1

x̊it (`)uit

)4

by standard arguments. So, we need to show that the right side of the last displayed equation

is bounded in probability. But as it was shown in part (i), the first moment is clearly finite.

Using Serfling (1980), we conclude that E∗
(
n−1/2

∑n
i=1 x̊it (`)u∗it

)4
= HTn. The latter is the case

because by Theorem 1 we have that

1

n1/2

n∑
i=1

x̊it (`)uit
d→ N (0,V 1,``) ,

and |̊xit (`)uit|4 is an Uniformly Integrable sequence, so that we can conclude that E
(
n−1/2

∑n
i=1 x̊it (`)uit

)4 →
3V 2

1,`` by Serfling (1980). �

7.6. PROOF OF PROPOSITION 4.

Proof. For notational simplicity, assume that x̃it is scalar. Then, by definition and using standard

algebra, we obtain

V̂
∗
1 −V 1 =

1

T

T∑
t=1

{
1

n1/2

n∑
i=1

x̃itũ
∗
it −

(
β̂
∗
FE − β̂

) 1

n1/2

n∑
i=1

x̃2
it

}2

−V 1

=
1

T

T∑
t=1

{
1

n1/2

n∑
i=1

x̃itu
∗
it

}2

+ n
(
β̂
∗
FE − β̂

)2 1

T

T∑
t=1

{
1

n

n∑
i=1

x̃2
it

}2

−2n1/2
(
β̂
∗
FE − β̂

) 1

T

T∑
t=1

{
1

n1/2

n∑
i=1

x̃itu
∗
it

}{
1

n

n∑
i=1

x̃2
it

}
−V 1.

The second and third term are negligible as Theorem 4 implies that β̂
∗
FE− β̂ = Op∗

(
n−1/2T−1/2

)
.

The third term, for instance, has by Cauchy-Schwartz’s inequality an absolute bootstrap moment

bounded by

Op∗
(
T−1/2

) 1

T

T∑
t=1

E∗{ 1

n1/2

n∑
i=1

x̃itu
∗
it

}2{
1

n

n∑
i=1

x̃2
it

}2
1/2

.
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By Markov’s inequality then we conclude that the third term (and similarly second term) is

op∗ (1) . Therefore

V̂
∗
1 −V 1 =

 1

T

T∑
t=1

{
1

n1/2

n∑
i=1

x̃itu
∗
it

}2

−V 1

+ op∗ (1) . (7.30)

Now, the term in square brackets on the right of (7.30) is

1

T

T∑
t=1

{ 1

n1/2

n∑
i=1

x̃itu
∗
it

}2

−
{

1

n1/2

n∑
i=1

x̊itu
∗
it

}2


+
1

T

T∑
t=1

{ 1

n1/2

n∑
i=1

x̊itu
∗
it

}2

− E∗
{

1

n1/2

n∑
i=1

x̊itu
∗
it

}2
 (7.31)

+
1

T

T∑
t=1

E∗

{
1

n1/2

n∑
i=1

x̊itu
∗
it

}2

−V 1,

which converges in probability to zero as we now show. Indeed, by definition, the first line of

(7.31) is

1

T

T∑
t=1

{
1

n1/2

n∑
i=1

u∗it

}2{
1

n

n∑
i=1

x̊it

}2

(7.32)

− 2

T

T∑
t=1

{
1

n1/2

n∑
i=1

u∗it

}{
1

n

n∑
i=1

x̊it

}{
1

n1/2

n∑
i=1

x̊itu
∗
it

}
.

The first bootstrap moment of the first term of (7.32) is 1

n2

n∑
i1,12=1

x̊i1tx̊i2t


 1

n

n∑
i,j=1

ϕu (i, j) +
1

n

n∑
i,j=1

{
1

T

T∑
s=1

uisujt − ϕu (i, j)

}
= op (1) (7.33)

as we now show. Recall that

E∗
(
u∗itu

∗
jt

)
=

1

T

T∑
s=1

ûisûjt =
1

T

T∑
s=1

uisujt

(
1 +Op

(
(nT )−1

))
.

First, C2 and (7.23) imply that

1

n4

n∑
i1,...,i4=1

E {(̊xi1tx̊i2t − ϕx (i1, i2)) (̊xi3tx̊i4t − ϕx (i3, i4))}

=
2

n2

 1

n

n∑
i,j=1

ϕx (i, j)

2

+
κ4

n4

n∑
i1,...,i4=1

∞∑
`=1

b` (i1) b` (i2) b` (i3) b` (i4) . (7.34)
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Similarly C1 implies that

E

 1

n

n∑
i,j=1

{
1

T

T∑
s=1

uisujt − ϕu (i, j)

}2

=
1

T

 1

n

n∑
i,j=1

ϕu (i, j)

2

+
κ4

Tn2

n∑
i1,i2,i3,i4=1

∞∑
`=0

a` (i1) a` (i2) a` (i3) a` (i4)

Next, by C3, we observe that

1

n3

n∑
j1,j2=1

ϕu (j1, j2)

n∑
i1,i2=1

ϕx (i1, i2)

≤ C

n

n∑
j=1

ϕu (1, j)
n∑
i=1

ϕx (1, i) = o

(
n∑
i=1

ϕu (1, i)ϕx (1, i)

)
= o (1) . (7.35)

after we notice that for sequences {ai}ni=1 and {bi}
n
i=1, such that

∑n
i=1 aibi < C and that

∑n
i=1 a

2
i <

C and
∑n

i=1 b
δ
i < C for some δ > 0, we have that

1

n

n∑
i=1

ai
1

n

n∑
i=1

bi = o

(
1

n

n∑
i=1

aibi

)
.

From here (7.33) holds true after we observe also that

E

 1

n2

n∑
i1,12=1

x̊i1tx̊i2t

E

∣∣∣∣∣∣ 1n
n∑

i,j=1

{
1

T

T∑
s=1

uisujt − ϕu (i, j)

}∣∣∣∣∣∣
≤ E

 1

n2

n∑
i1,12=1

x̊i1tx̊i2t


E

∣∣∣∣∣∣ 1n
n∑

i,j=1

{
1

T

T∑
s=1

uisujt − ϕu (i, j)

}∣∣∣∣∣∣
21/2

and that by C3 and (7.35),

E

 1

n2

n∑
i1,12=1

x̊i1tx̊i2t

 1

n

n∑
i,j=1

ϕu (i, j) = o (1) .

The second term of (7.32) has absolute bootstrap moment bounded by

2

T

T∑
t=1

E∗{ 1

n1/2

n∑
i=1

u∗it

}2{
1

n

n∑
i=1

x̊it

}2
1/2E∗{ 1

n1/2

n∑
i=1

x̊itu
∗
it

}2
1/2

using Cauchy-Schwarz’s inequality. Our argument for the first term together with the fact that

by Theorem 1 E {
∑n

i=1 x̊ituit}
2 = O (n), ensures that that the last displayed expression is also

o (1). By Markov’s inequality, we then conclude that (7.32) = op∗ (1). The next two lines of (7.31)

finally are op∗ (1) by standard arguments. Also observe that

1

n3

n∑
i,j=1

ϕu (i, j)

∞∑
`=1

b` (i1) b` (i2) b` (i3) b` (i4) = o (1)
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by C2 and C3. This concludes the proof. �

7.7. PROOF OF THEOREM 5.

Proof. Because the results of Theorem 4 and Cràmer-Wold’s arguments, it remains to show the

tightness condition. To simplify the notation, we shall assume that x̊it is scalar. We shall begin

with part (a). First, Lemma 2 yields that

T ∗ (r) =
1

(nT )1/2

[Tτ ]∑
t=1

n∑
i=1

x̃itu
∗
it − τ

T∑
t=1

n∑
i=1

x̃itu
∗
it

 (1 + op∗ (1)) , (7.36)

where the op∗ (1) is uniformly in τ ∈ (0, 1). Now using (2.9), we have that standard algebra

implies that the first term on the right of (7.36) is

1

(nT )1/2

[Tτ ]∑
t=1

n∑
i=1

x̊itu
∗
it +

1

(nT )1/2

[Tτ ]∑
t=1

(
n1/2x̊·t

)(
n1/2u∗·t

)
. (7.37)

Denoting the second term of (7.37) by X∗n,T (τ) and using standard algebra, we have that

E∗
(
X∗n,T (τ2)− X∗n,T (τ1)

)2
=

1

n2T 2

[Tτ2]∑
t=[Tτ1]+1

(
n1/2x̊·t

)2
n∑

i,j=1

T∑
s=1

ûisûjs

=
1

n2T 2

[Tτ2]∑
t=[Tτ1]+1

(
n1/2x̊·t

)2
n∑

i,j=1

T∑
s=1

uisujs (1 + op (1)) .

Dropping the op (1) as it is not relevant, we obtain that he expectation of the right side of the

last displayed expression is

τ2 − τ1

n

1

n

n∑
i,j=1

ϕx (i, j)
1

n

n∑
i,j=1

ϕu (i, j) = C
τ2 − τ1

nζ

≤ C (τ2 − τ1)1+ξζ

in view of (2.7), because T ξ = o (n) and, as usual, we can take T−1 ≤ (τ2 − τ1).

Next, to ensure that X∗n,T (τ) is tight (in probability) it suffi ces to show that the second moment

of

1

nT

[Tτ2]∑
t=[Tτ1]+1

(n1/2x̊·t
)2 1

n

n∑
i,j=1

1

T

T∑
s=1

uisujs −
1

n

n∑
i,j=1

ϕx (i, j)
1

n

n∑
i,j=1

ϕu (i, j)
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is bounded by C (τ2 − τ1)1+ν for some ν > 0. But by using standard algebra, that moment is

1

n2
E

 1

nT

[Tτ2]∑
t=[Tτ1]+1

n∑
i,j=1

(̊xitx̊jt − ϕx (i, j))


2

E

 1

nT

T∑
s=1

n∑
i,j=1

(uisujs − ϕu (i, j))


2

+
1

n2

 1

n

n∑
i,j=1

ϕu (i, j)


2

E

 1

nT

[Tτ2]∑
t=[Tτ1]+1

n∑
i,j=1

(̊xitx̊jt − ϕx (i, j))


2

(7.38)

+
1

n2

(τ2 − τ1)

n

n∑
i,j=1

ϕx (i, j)


2

E

 1

nT

T∑
s=1

n∑
i,j=1

(uisujs − ϕu (i, j))


2

.

Let us examine the first term in (7.38). As C1 indicates that for all i ≥ 1, uit and uis are

independent, we conclude that the second factor in braces is

1

T 2n2

T∑
s=1

E

 n∑
i,j=1

(uisujs − ϕu (i, j))

2

=
1

Tn2
E

 n∑
i,j=1

(uisujs − ϕu (i, j))

2

=
1

Tn2

 n∑
i1,i2=1

ϕu (i1, i2)

2

+
1

Tn2

n∑
i1,i2,i3,i4=1

cum (uiis, ui2s, ui3s, ui4s) .

Now proceeding similarly with the first factor in braces, we conclude that the first term in (7.38)

is bounded by

(τ2 − τ1)

T 2

 1

n3

n∑
i1,i2=1

ϕu (i1, i2)

n∑
i1,i2=1

ϕx (i1, i2)

2

+
(τ2 − τ1)

T 2

 1

n6

n∑
i1,i2,i3,i4=1

cum (uiis, ui2s, ui3s, ui4s)

n∑
i1,i2,i3,i4=1

cum (xiis, xi2s, xi3s, xi4s)


From here and given cum (xiis, xi2s, xi3s, xi4s) =

∑∞
`=1 b` (i1) b` (i2) b` (i3) b` (i4), using our result

in (7.35), we conclude that the first term in (7.38) is bounded by C (τ2 − τ1)1+ν for some ν > 0.

Proceeding similarly with the last two terms in (7.38) , using the fact that the finite distribution

converges to zero in probability, we conclude that the second term of (7.37), i.e. Xn,T (τ) is op∗ (1)

uniformly in τ ∈ [0, 1].

So, the first term on the right of (7.36) is governed by the first term of (7.37). Proceeding

similarly with the second term, we conclude that to complete the proof of part (a), it suffi ces to

examine the tightness condition of

1

(nT )1/2

[Tτ ]∑
t=1

n∑
i=1

x̊itu
∗
it − τ

T∑
t=1

n∑
i=1

x̊itu
∗
it

 . (7.39)
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But (7.39) is tight after we notice that

E∗


 1

T 1/2

[Tτ2]∑
t=[Tτ1]+1

1

n1/2

n∑
i=1

x̊itu
∗
it

2 1

T 1/2

[Tτ3]∑
t=[Tτ2]+1

1

n1/2

n∑
i=1

x̊itu
∗
it

2
= E∗

 1

T 1/2

[Tτ2]∑
t=[Tτ1]+1

1

n1/2

n∑
i=1

x̊itu
∗
it

2

E∗

 1

T 1/2

[Tτ3]∑
t=[Tτ2]+1

1

n1/2

n∑
i=1

x̊itu
∗
it

2

=
1

T

[Tτ2]∑
t=[Tτ1]+1

E∗

(
1

n1/2

n∑
i=1

x̊itu
∗
it

)2
1

T

[Tτ3]∑
t=[Tτ2]+1

E∗

(
1

n1/2

n∑
i=1

x̊itu
∗
it

)2

= (τ3 − τ1)2Op (1) .

because (τ2 − τ1) (τ3 − τ2) ≤ (τ3 − τ1)2. This completes the proof of part (a).

We now focus on the proof of part (b). We shall first examine the behaviour of

X̆∗n,T (τ) =
(n
T

)1/2
[Tτ ]∑
t=1

(
β̂
∗
t − β̃FE

)
.

By definition, we have that

β̂
∗
t − β̃FE = Σ−1

x

1

n

n∑
i=1

x̃itu
∗
it −

(
Σ−1
x − Σ̂−1

x

) 1

n

n∑
i=1

x̃itu
∗
it. (7.40)

The contribution due to the second term on the right of (7.40) into X̆n,T (τ) is, after standard

algebra,

1

T 1/2

[Tτ ]∑
t=1

Σ−1
x

(
Σx − Σ̂x

)
Σ−1
x

1

n1/2

n∑
i=1

x̃itu
∗
it (7.41)

+
1

T 1/2

[Tτ ]∑
t=1

Σ−1
x

(
Σx − Σ̂x

)(
Σ̂−1
x − Σ−1

x

) 1

n1/2

n∑
i=1

x̃itu
∗
it.

The second term of (7.41) is easily seen to be Op
(
T 1/2/n

)
uniformly in τ ∈ [0, 1], because C2 and

C4 imply that E
∥∥∥Σ̂x − Σx

∥∥∥2
= O

(
n−1

)
and E∗ ‖

∑n
i=1 x̃itu

∗
it‖

2 = Op (n) by Theorem 4.

We now examine the first term of (7.41). To that end, we note that it does not make a difference

whether we consider x̃it or x̊it. Because E∗u∗itu
∗
js = 0 if t 6= s, the first term of (7.41) is bounded

by

λ−2 (Σx)

Tn3

[Tτ2]∑
t=1+[Tτ1]

E∗


n∑
i=1

{
x̊itx̊

′
it − Σx,i

} n∑
i,j=1

x̊itx̊
′
jt

(
u∗itu

∗
jt

) n∑
i=1

{
x̊itx̊

′
it − Σx,i

} . (7.42)

To simplify notation, let xit be scalar. By definition and using C1 to C3, the expectation term of

(7.42) is
n∑

i,j=1

(
1

T

T∑
s=1

uisujs

)
n∑

k,`=1

{(
x̊2
kt − Σx,k

) (
x̊2
`t − Σx,`

)
x̊itx̊jt

}
,

where we have replaced ûjs by ujs say, as the difference is negligible. Now proceeding as in part

(a) and using the arguments with (7.22), we conclude that the first term of (7.41) is tight. But,
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as a by product, we also have shown that, for any τ ∈ [0, 1], (7.41) converges in probability to 0.

So, (7.41) converges in probability to zero uniformly in τ ∈ [0, 1] in the bootstrap sense.

We conclude that the contribution due to the second term on the right of (7.40) to X∗n,T (τ) is

negligible, and it suffi ces to examine the behaviour of

X̃∗n,T (τ) = Σ−1
x

1

T 1/2

[Tτ ]∑
t=1

{
1

n1/2

n∑
i=1

x̃itu
∗
it

}
.

As X̃∗n,T (τ) is essentially (7.37), proceeding as in part (a), we can conclude that

X̃∗n,T (τ)
weakly→ Σ−1V 1/2

1 B (τ) .

From here the proof of part (b) follows because X̆∗n,T (τ) = X̃∗n,T (τ)− τ X̃∗n,T (1) + op∗ (1). �
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Table 1.1. Size of the slope homogeneity test

No heterogeneity σ2
ui = σ2

vi = 1; No time dependence in regressors: ρzi=0

No spatial dependence Weak Spatial dependence (exponential)

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

(25, 25)
ε = 0.00 0.072 0.047 0.047 0.048 0.081 0.030 0.051 0.036
ε = 0.05 0.004 0.036 0.034 0.019 0.050 0.047 0.008 0.044 0.043 0.014 0.058 0.037
ε = 0.10 0.006 0.038 0.050 0.026 0.052 0.046 0.009 0.047 0.059 0.018 0.056 0.039

(100, 25)
ε = 0.00 0.079 0.073 0.064 0.058 0.074 0.059 0.057 0.053
ε = 0.05 0.005 0.010 0.035 0.032 0.040 0.041 0.006 0.011 0.040 0.022 0.049 0.042
ε = 0.10 0.008 0.014 0.053 0.046 0.045 0.046 0.007 0.012 0.053 0.034 0.053 0.047

(25, 100)
ε = 0.00 0.066 0.052 0.049 0.047 0.067 0.047 0.054 0.045
ε = 0.05 0.025 0.060 0.035 0.028 0.047 0.052 0.031 0.059 0.035 0.025 0.054 0.045
ε = 0.10 0.027 0.062 0.048 0.041 0.045 0.052 0.031 0.060 0.052 0.035 0.053 0.045

(100, 100)
ε = 0.00 0.057 0.057 0.049 0.051 0.057 0.053 0.051 0.050
ε = 0.05 0.028 0.035 0.039 0.035 0.048 0.049 0.026 0.031 0.037 0.032 0.052 0.052
ε = 0.10 0.030 0.037 0.052 0.050 0.054 0.052 0.028 0.034 0.047 0.045 0.052 0.054

Weak Spatial dependence (polynomial) Strong Spatial dependence

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

(25, 25)
ε = 0.00 0.074 0.029 0.047 0.039 0.073 0.014 0.050 0.011
ε = 0.05 0.007 0.068 0.038 0.013 0.047 0.035 0.011 0.156 0.045 0.010 0.053 0.012
ε = 0.10 0.008 0.073 0.052 0.016 0.049 0.038 0.010 0.158 0.063 0.012 0.054 0.011

(100, 25)
ε = 0.00 0.076 0.056 0.050 0.052 0.027 0.032 0.052 0.036
ε = 0.05 0.005 0.015 0.033 0.022 0.045 0.045 0.008 0.032 0.015 0.014 0.052 0.032
ε = 0.10 0.007 0.018 0.048 0.033 0.048 0.048 0.008 0.036 0.020 0.018 0.052 0.033

(25, 100)
ε = 0.00 0.064 0.037 0.050 0.041 0.062 0.027 0.058 0.010
ε = 0.05 0.029 0.082 0.038 0.021 0.051 0.039 0.042 0.119 0.043 0.015 0.057 0.010
ε = 0.10 0.029 0.080 0.051 0.029 0.050 0.040 0.035 0.116 0.055 0.020 0.061 0.009

(100, 100)
ε = 0.00 0.063 0.060 0.053 0.050 0.060 0.042 0.047 0.037
ε = 0.05 0.027 0.037 0.036 0.031 0.048 0.047 0.032 0.040 0.036 0.021 0.053 0.036
ε = 0.10 0.029 0.041 0.047 0.045 0.050 0.050 0.032 0.043 0.049 0.031 0.051 0.038
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Table 1.2. Size of the slope homogeneity test - individual parameters

No heterogeneity σ2
ui = σ2

vi = 1; No time dependence in regressors: ρzi=0

No spatial dependence Weak Spatial dependence (exponential)

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) T ∆
ε θ ρ θ ρ θ ρ θ ρ θ ρ θ ρ

(25, 25)
ε = 0.00 0.041 0.040 0.048 0.048 0.050 0.048 0.047 0.045 0.040 0.042 0.042 0.042
ε = 0.05 0.036 0.031 0.029 0.027 0.053 0.045 0.039 0.037 0.024 0.030 0.042 0.043
ε = 0.10 0.040 0.035 0.040 0.033 0.052 0.045 0.044 0.042 0.030 0.036 0.043 0.045

(100, 25)
ε = 0.00 0.023 0.026 0.063 0.066 0.053 0.063 0.025 0.024 0.056 0.056 0.052 0.050
ε = 0.05 0.014 0.015 0.036 0.038 0.051 0.034 0.017 0.015 0.029 0.037 0.052 0.036
ε = 0.10 0.017 0.020 0.046 0.052 0.050 0.046 0.021 0.019 0.039 0.044 0.054 0.043

(25, 100)
ε = 0.00 0.055 0.058 0.050 0.056 0.050 0.049 0.058 0.056 0.053 0.046 0.051 0.045
ε = 0.05 0.054 0.056 0.034 0.039 0.048 0.046 0.054 0.052 0.030 0.036 0.044 0.044
ε = 0.10 0.057 0.057 0.044 0.047 0.050 0.048 0.058 0.056 0.040 0.040 0.047 0.044

(100, 100)
ε = 0.00 0.039 0.039 0.055 0.055 0.051 0.053 0.040 0.039 0.055 0.052 0.052 0.049
ε = 0.05 0.033 0.039 0.038 0.046 0.049 0.046 0.035 0.034 0.039 0.040 0.050 0.049
ε = 0.10 0.036 0.040 0.050 0.051 0.051 0.051 0.036 0.038 0.048 0.047 0.048 0.054

Weak Spatial dependence (polynomial) Strong Spatial dependence

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) T ∆
ε θ ρ θ ρ θ ρ θ ρ θ ρ θ ρ

(25, 25)
ε = 0.00 0.064 0.066 0.038 0.041 0.043 0.041 0.094 0.125 0.022 0.030 0.013 0.015
ε = 0.05 0.055 0.049 0.021 0.026 0.042 0.039 0.097 0.112 0.015 0.020 0.015 0.014
ε = 0.10 0.059 0.057 0.027 0.033 0.043 0.040 0.098 0.117 0.016 0.022 0.013 0.015

(100, 25)
ε = 0.00 0.028 0.026 0.052 0.058 0.053 0.049 0.035 0.043 0.039 0.045 0.040 0.038
ε = 0.05 0.019 0.018 0.032 0.034 0.052 0.038 0.028 0.030 0.022 0.029 0.039 0.034
ε = 0.10 0.023 0.021 0.040 0.041 0.051 0.042 0.031 0.033 0.026 0.033 0.039 0.035

(25, 100)
ε = 0.00 0.071 0.073 0.049 0.046 0.046 0.043 0.084 0.095 0.037 0.034 0.013 0.014
ε = 0.05 0.070 0.069 0.032 0.033 0.040 0.042 0.093 0.091 0.023 0.023 0.012 0.012
ε = 0.10 0.071 0.070 0.041 0.038 0.045 0.043 0.090 0.096 0.029 0.028 0.012 0.013

(100, 100)
ε = 0.00 0.042 0.044 0.054 0.061 0.051 0.053 0.042 0.042 0.045 0.047 0.043 0.039
ε = 0.05 0.036 0.038 0.035 0.043 0.047 0.046 0.037 0.038 0.026 0.035 0.038 0.037
ε = 0.10 0.039 0.041 0.045 0.050 0.048 0.046 0.040 0.040 0.035 0.042 0.041 0.038
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Table 1.3. Power of the slope homogeneity test DGP1 - break in θ

No heterogeneity σ2
ui = σ2

vi = 1; No time dependence in regressors: ρzi=0

No spatial dependence Weak Spatial dependence (exponential)

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 0.998 0.968 0.998 0.951 0.919 0.637 0.880 0.595
ε = 0.05 0.854 0.827 0.975 0.661 0.986 0.799 0.581 0.630 0.694 0.250 0.740 0.378
ε = 0.10 0.902 0.870 0.987 0.796 0.988 0.842 0.662 0.690 0.782 0.335 0.767 0.410

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.776 0.433 0.715 0.440 0.439 0.171 0.349 0.170
ε = 0.05 0.573 0.570 0.615 0.326 0.871 0.651 0.371 0.413 0.319 0.113 0.500 0.257
ε = 0.10 0.653 0.638 0.755 0.456 0.893 0.685 0.430 0.471 0.422 0.167 0.523 0.280

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Weak Spatial dependence (polynomial) Strong Spatial dependence

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 0.863 0.433 0.797 0.438 0.458 0.072 0.378 0.036
ε = 0.05 0.240 0.410 0.566 0.127 0.604 0.229 0.047 0.290 0.177 0.021 0.207 0.016
ε = 0.10 0.310 0.467 0.676 0.190 0.651 0.262 0.059 0.316 0.261 0.029 0.242 0.020

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.353 0.101 0.273 0.126 0.172 0.027 0.127 0.018
ε = 0.05 0.142 0.250 0.249 0.061 0.376 0.157 0.051 0.225 0.112 0.017 0.149 0.017
ε = 0.10 0.180 0.285 0.340 0.087 0.410 0.174 0.055 0.245 0.165 0.021 0.175 0.018

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 0.998 0.992 0.997 0.985
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.992 0.991 0.998 0.997
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.997 0.997 0.999 0.998
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Table 1.4. Power of the slope homogeneity test DGP1 - Individual parameters

No heterogeneity σ2
ui = σ2

vi = 1; No time dependence in regressors: ρzi=0

No spatial dependence Weak Spatial dependence (exponential)

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) T ∆
ε θ ρ θ ρ θ ρ θ ρ θ ρ θ ρ

t0 = [0.5T ]
(25, 25)
ε = 0.00 0.991 0.049 0.997 0.045 0.994 0.036 0.834 0.051 0.873 0.041 0.820 0.034
ε = 0.05 0.949 0.044 0.976 0.027 0.971 0.037 0.641 0.036 0.646 0.025 0.640 0.029
ε = 0.10 0.967 0.048 0.984 0.032 0.977 0.039 0.698 0.042 0.716 0.031 0.681 0.031

(100, 100)
ε = 0.00 1.000 0.043 1.000 0.053 1.000 0.036 1.000 0.046 1.000 0.052 1.000 0.040
ε = 0.05 1.000 0.045 1.000 0.039 1.000 0.031 1.000 0.041 1.000 0.039 1.000 0.035
ε = 0.10 1.000 0.045 1.000 0.048 1.000 0.037 1.000 0.044 1.000 0.046 1.000 0.037

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.710 0.041 0.753 0.047 0.752 0.041 0.369 0.042 0.365 0.040 0.340 0.036
ε = 0.05 0.795 0.029 0.575 0.030 0.856 0.042 0.432 0.026 0.269 0.028 0.437 0.035
ε = 0.10 0.840 0.032 0.688 0.035 0.878 0.042 0.481 0.033 0.348 0.032 0.471 0.036

(100, 100)
ε = 0.00 1.000 0.040 1.000 0.052 1.000 0.041 1.000 0.038 1.000 0.051 1.000 0.041
ε = 0.05 1.000 0.031 1.000 0.043 1.000 0.039 1.000 0.028 1.000 0.044 1.000 0.040
ε = 0.10 1.000 0.034 1.000 0.054 1.000 0.041 1.000 0.033 1.000 0.045 1.000 0.043

Weak Spatial dependence (polynomial) Strong Spatial dependence

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) T ∆
ε θ ρ θ ρ θ ρ θ ρ θ ρ θ ρ

t0 = [0.5T ]
(25, 25)
ε = 0.00 0.757 0.063 0.731 0.037 0.682 0.031 0.417 0.109 0.206 0.028 0.106 0.014
ε = 0.05 0.555 0.047 0.451 0.024 0.485 0.029 0.293 0.087 0.075 0.020 0.042 0.010
ε = 0.10 0.613 0.055 0.524 0.029 0.528 0.030 0.324 0.095 0.102 0.023 0.052 0.011

(100, 100)
ε = 0.00 1.000 0.048 1.000 0.054 1.000 0.040 1.000 0.045 1.000 0.046 1.000 0.029
ε = 0.05 1.000 0.043 1.000 0.036 1.000 0.034 1.000 0.038 1.000 0.032 1.000 0.028
ε = 0.10 1.000 0.048 1.000 0.049 1.000 0.036 1.000 0.043 1.000 0.037 1.000 0.028

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.327 0.061 0.242 0.039 0.243 0.037 0.204 0.116 0.066 0.030 0.035 0.016
ε = 0.05 0.361 0.037 0.167 0.025 0.300 0.031 0.217 0.083 0.041 0.021 0.035 0.014
ε = 0.10 0.401 0.047 0.226 0.028 0.331 0.033 0.235 0.093 0.056 0.024 0.040 0.014

(100, 100)
ε = 0.00 1.000 0.044 1.000 0.060 1.000 0.042 0.998 0.040 0.999 0.043 0.998 0.030
ε = 0.05 1.000 0.030 1.000 0.044 1.000 0.038 1.000 0.028 0.997 0.034 1.000 0.031
ε = 0.10 1.000 0.036 1.000 0.053 1.000 0.039 1.000 0.033 0.999 0.040 1.000 0.030
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Table 1.5. Power of the slope homogeneity test DGP2 - break in ρ

No heterogeneity σ2
ui = σ2

vi = 1; No time dependence in regressors: ρzi=0

No spatial dependence Weak Spatial dependence (exponential)

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 0.324 0.212 0.273 0.222 0.203 0.095 0.151 0.108
ε = 0.05 0.043 0.120 0.156 0.067 0.193 0.152 0.024 0.085 0.098 0.029 0.126 0.079
ε = 0.10 0.058 0.141 0.210 0.102 0.214 0.169 0.033 0.101 0.136 0.044 0.140 0.083

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 0.987 0.984 0.985 0.982
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 0.969 0.969 0.952 0.940 0.965 0.958
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 0.976 0.976 0.967 0.958 0.971 0.966

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.155 0.077 0.106 0.079 0.140 0.051 0.101 0.059
ε = 0.05 0.032 0.052 0.115 0.033 0.144 0.078 0.029 0.059 0.098 0.022 0.120 0.055
ε = 0.10 0.042 0.066 0.152 0.047 0.150 0.085 0.036 0.067 0.126 0.030 0.123 0.058

(100, 100)
ε = 0.00 0.985 0.974 0.981 0.967 0.890 0.848 0.884 0.841
ε = 0.05 0.987 0.980 0.984 0.979 0.991 0.988 0.856 0.817 0.861 0.825 0.897 0.862
ε = 0.10 0.990 0.986 0.992 0.989 0.994 0.989 0.874 0.842 0.898 0.864 0.912 0.880

Weak Spatial dependence (polynomial) Strong Spatial dependence

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 0.179 0.077 0.131 0.097 0.127 0.024 0.090 0.019
ε = 0.05 0.020 0.114 0.090 0.022 0.106 0.063 0.021 0.188 0.064 0.013 0.082 0.015
ε = 0.10 0.027 0.127 0.121 0.033 0.116 0.069 0.019 0.196 0.098 0.016 0.086 0.015

(100, 100)
ε = 0.00 0.974 0.965 0.971 0.960 0.542 0.473 0.499 0.440
ε = 0.05 0.902 0.904 0.918 0.890 0.933 0.921 0.319 0.343 0.338 0.264 0.389 0.333
ε = 0.10 0.918 0.920 0.943 0.923 0.949 0.932 0.346 0.377 0.408 0.338 0.413 0.360

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.115 0.040 0.076 0.051 0.099 0.018 0.093 0.013
ε = 0.05 0.022 0.081 0.084 0.017 0.094 0.045 0.023 0.167 0.068 0.013 0.117 0.013
ε = 0.10 0.026 0.092 0.107 0.022 0.100 0.050 0.023 0.176 0.091 0.014 0.122 0.013

(100, 100)
ε = 0.00 0.721 0.629 0.696 0.585 0.267 0.167 0.230 0.139
ε = 0.05 0.729 0.662 0.728 0.649 0.782 0.708 0.257 0.186 0.254 0.135 0.303 0.183
ε = 0.10 0.748 0.693 0.783 0.711 0.798 0.728 0.265 0.208 0.308 0.185 0.316 0.197
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Table 1.6. Power of the slope homogeneity test DGP2 - individual parameters

No heterogeneity σ2
ui = σ2

vi = 1; No time dependence in regressors: ρzi=0

No spatial dependence Weak Spatial dependence (exponential)

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) T ∆
ε θ ρ θ ρ θ ρ θ ρ θ ρ θ ρ

t0 = [0.5T ]
(25, 25)
ε = 0.00 0.042 0.286 0.049 0.314 0.050 0.306 0.047 0.174 0.039 0.175 0.042 0.167
ε = 0.05 0.036 0.182 0.030 0.158 0.053 0.233 0.039 0.111 0.023 0.098 0.040 0.130
ε = 0.10 0.039 0.212 0.038 0.201 0.051 0.247 0.043 0.134 0.032 0.122 0.041 0.140

(100, 100)
ε = 0.00 0.035 1.000 0.054 1.000 0.048 1.000 0.038 0.991 0.056 0.993 0.052 0.993
ε = 0.05 0.033 1.000 0.037 1.000 0.051 1.000 0.034 0.974 0.040 0.977 0.048 0.981
ε = 0.10 0.036 1.000 0.051 1.000 0.053 1.000 0.035 0.979 0.079 0.983 0.049 0.986

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.042 0.091 0.050 0.117 0.051 0.105 0.045 0.073 0.042 0.074 0.043 0.073
ε = 0.05 0.036 0.078 0.030 0.086 0.055 0.116 0.039 0.056 0.023 0.058 0.039 0.074
ε = 0.10 0.040 0.094 0.040 0.107 0.051 0.126 0.043 0.070 0.030 0.065 0.040 0.079

(100, 100)
ε = 0.00 0.038 0.985 0.056 0.992 0.051 0.990 0.040 0.773 0.053 0.816 0.051 0.806
ε = 0.05 0.035 0.992 0.037 0.993 0.051 0.994 0.036 0.830 0.039 0.850 0.051 0.872
ε = 0.10 0.038 0.994 0.051 0.995 0.052 0.995 0.036 0.852 0.048 0.875 0.049 0.889

Weak Spatial dependence (polynomial) Strong Spatial dependence

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) T ∆
ε θ ρ θ ρ θ ρ θ ρ θ ρ θ ρ

t0 = [0.5T ]
(25, 25)
ε = 0.00 0.063 0.183 0.038 0.135 0.043 0.306 0.100 0.193 0.023 0.063 0.015 0.031
ε = 0.05 0.054 0.123 0.022 0.077 0.041 0.233 0.098 0.154 0.016 0.038 0.017 0.021
ε = 0.10 0.058 0.144 0.027 0.090 0.042 0.247 0.100 0.168 0.017 0.044 0.014 0.023

(100, 100)
ε = 0.00 0.040 0.978 0.053 0.983 0.050 0.981 0.040 0.569 0.043 0.582 0.040 0.547
ε = 0.05 0.035 0.949 0.036 0.952 0.043 0.959 0.037 0.445 0.028 0.426 0.038 0.441
ε = 0.10 0.037 0.959 0.043 0.965 0.045 0.967 0.038 0.482 0.035 0.488 0.038 0.462

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.063 0.094 0.037 0.067 0.043 0.061 0.097 0.149 0.022 0.042 0.014 0.020
ε = 0.05 0.055 0.075 0.022 0.047 0.042 0.064 0.098 0.125 0.017 0.029 0.017 0.018
ε = 0.10 0.059 0.088 0.028 0.055 0.043 0.067 0.098 0.137 0.018 0.032 0.014 0.019

(100, 100)
ε = 0.00 0.041 0.712 0.052 0.769 0.050 0.737 0.041 0.232 0.043 0.252 0.041 0.223
ε = 0.05 0.037 0.776 0.036 0.805 0.047 0.813 0.039 0.258 0.029 0.256 0.039 0.275
ε = 0.10 0.038 0.798 0.044 0.833 0.048 0.828 0.040 0.284 0.037 0.292 0.040 0.283
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Table 2.1. Size of the slope homogeneity test

No heterogeneity σ2
ui = σ2

vi = 1 apart from fixed individual heterogeneity

in zit; No time dependence in regressors: ρzi = 0

No spatial dependence Weak Spatial dependence (exponential)

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

(25, 25)
ε = 0.00 0.073 0.044 0.047 0.031 0.070 0.034 0.047 0.023
ε = 0.05 0.005 0.067 0.032 0.018 0.044 0.018 0.006 0.049 0.034 0.014 0.046 0.013
ε = 0.10 0.006 0.061 0.047 0.023 0.045 0.022 0.007 0.048 0.050 0.019 0.046 0.016

(100, 25)
ε = 0.00 0.080 0.061 0.062 0.046 0.069 0.054 0.051 0.048
ε = 0.05 0.006 0.037 0.036 0.027 0.049 0.024 0.005 0.030 0.037 0.023 0.048 0.032
ε = 0.10 0.007 0.031 0.053 0.037 0.053 0.031 0.007 0.027 0.056 0.033 0.050 0.041

(25, 100)
ε = 0.00 0.057 0.050 0.052 0.043 0.061 0.049 0.050 0.040
ε = 0.05 0.027 0.068 0.038 0.033 0.048 0.032 0.031 0.052 0.037 0.025 0.055 0.037
ε = 0.10 0.029 0.063 0.047 0.044 0.051 0.037 0.029 0.048 0.052 0.038 0.053 0.038

(100, 100)
ε = 0.00 0.059 0.057 0.044 0.044 0.053 0.050 0.044 0.043
ε = 0.05 0.022 0.041 0.032 0.030 0.045 0.032 0.026 0.031 0.035 0.027 0.048 0.035
ε = 0.10 0.026 0.037 0.047 0.043 0.047 0.037 0.027 0.032 0.047 0.040 0.047 0.039

Weak Spatial dependence (polynomial) Strong Spatial dependence

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

(25, 25)
ε = 0.00 0.076 0.033 0.055 0.025 0.066 0.019 0.055 0.011
ε = 0.05 0.006 0.058 0.038 0.011 0.051 0.013 0.010 0.078 0.037 0.011 0.055 0.009
ε = 0.10 0.008 0.057 0.051 0.017 0.055 0.018 0.009 0.080 0.050 0.013 0.056 0.009

(100, 25)
ε = 0.00 0.077 0.056 0.053 0.046 0.071 0.036 0.048 0.040
ε = 0.05 0.005 0.032 0.034 0.022 0.048 0.037 0.006 0.032 0.038 0.016 0.054 0.054
ε = 0.10 0.007 0.029 0.050 0.036 0.047 0.039 0.008 0.031 0.051 0.020 0.052 0.052

(25, 100)
ε = 0.00 0.059 0.048 0.049 0.036 0.059 0.035 0.045 0.020
ε = 0.05 0.030 0.060 0.040 0.026 0.053 0.036 0.037 0.047 0.042 0.016 0.056 0.016
ε = 0.10 0.032 0.055 0.051 0.034 0.054 0.037 0.031 0.045 0.048 0.024 0.050 0.017

(100, 100)
ε = 0.00 0.063 0.059 0.050 0.047 0.066 0.048 0.049 0.029
ε = 0.05 0.024 0.035 0.037 0.027 0.048 0.035 0.035 0.024 0.043 0.028 0.060 0.026
ε = 0.10 0.027 0.036 0.055 0.045 0.047 0.039 0.032 0.024 0.062 0.038 0.055 0.027



INFERENCE AND HOMOGENEITY IN LARGE DYNAMIC PANELS 61

Table 2.2. Power of the slope homogeneity test DGP1 - break in θ

No heterogeneity σ2
ui = σ2

vi = 1 apart from fixed individual heterogeneity

in zit; No time dependence in regressors: ρzi = 0

No spatial dependence Weak Spatial dependence (exponential)

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 1.000 0.981 1.000 0.923 0.998 0.851 0.996 0.621
ε = 0.05 0.995 0.988 1.000 0.117 1.000 0.024 0.816 0.844 0.966 0.203 0.977 0.041
ε = 0.10 0.997 0.992 1.000 0.504 1.000 0.154 0.876 0.881 0.986 0.422 0.983 0.146

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.960 0.515 0.954 0.440 0.774 0.276 0.736 0.191
ε = 0.05 0.929 0.886 0.889 0.181 0.990 0.210 0.599 0.578 0.615 0.122 0.853 0.140
ε = 0.10 0.954 0.918 0.950 0.419 0.993 0.502 0.671 0.634 0.758 0.234 0.883 0.261

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Weak Spatial dependence (polynomial) Strong Spatial dependence

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 0.995 0.763 0.993 0.544 0.989 0.502 0.985 0.149
ε = 0.05 0.723 0.797 0.939 0.136 0.956 0.044 0.692 0.857 0.903 0.081 0.916 0.010
ε = 0.10 0.798 0.836 0.972 0.279 0.968 0.105 0.763 0.888 0.949 0.145 0.943 0.017

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.698 0.215 0.670 0.160 0.728 0.088 0.740 0.039
ε = 0.05 0.501 0.512 0.571 0.093 0.792 0.132 0.572 0.536 0.561 0.050 0.804 0.037
ε = 0.10 0.571 0.567 0.699 0.183 0.830 0.198 0.641 0.589 0.712 0.080 0.851 0.053

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 2.3. Power of the slope homogeneity testDGP2 - break in ρ

No heterogeneity σ2
ui = σ2

vi = 1 apart from fixed individual heterogeneity

in zit; No time dependence in regressors: ρzi = 0

No spatial dependence Weak Spatial dependence (exponential)

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 0.881 0.604 0.845 0.479 0.673 0.386 0.602 0.276
ε = 0.05 0.350 0.589 0.671 0.109 0.716 0.031 0.143 0.392 0.384 0.080 0.428 0.039
ε = 0.10 0.431 0.639 0.761 0.217 0.747 0.113 0.193 0.435 0.480 0.150 0.467 0.083

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.501 0.114 0.392 0.052 0.322 0.067 0.247 0.036
ε = 0.05 0.302 0.118 0.479 0.027 0.596 0.011 0.159 0.086 0.289 0.025 0.375 0.013
ε = 0.10 0.355 0.139 0.593 0.060 0.617 0.021 0.191 0.097 0.374 0.043 0.393 0.022

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Weak Spatial dependence (polynomial) Strong Spatial dependence

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 0.614 0.302 0.582 0.240 0.755 0.251 0.719 0.093
ε = 0.05 0.118 0.366 0.356 0.059 0.394 0.037 0.196 0.529 0.426 0.044 0.487 0.012
ε = 0.10 0.158 0.405 0.444 0.110 0.435 0.073 0.252 0.570 0.551 0.068 0.548 0.019

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.302 0.068 0.245 0.037 0.374 0.038 0.334 0.012
ε = 0.05 0.132 0.090 0.263 0.019 0.340 0.016 0.202 0.159 0.300 0.018 0.421 0.010
ε = 0.10 0.158 0.106 0.341 0.032 0.361 0.022 0.235 0.176 0.397 0.022 0.459 0.011

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 3.1. Size of the slope homogeneity test

Presence of heterogeneity σ2
ui ∼ IIDχ

2(2)/2, σ2
zi ∼ IIDχ

2(1);

No time dependence in regressors: ρzi = 0

No spatial dependence Weak Spatial dependence (exponential)

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

(25, 25)
ε = 0.00 0.075 0.034 0.059 0.046 0.080 0.029 0.054 0.037
ε = 0.05 0.010 0.035 0.040 0.012 0.060 0.040 0.011 0.089 0.048 0.013 0.062 0.031
ε = 0.10 0.011 0.035 0.054 0.017 0.060 0.045 0.011 0.093 0.060 0.017 0.059 0.033

(100, 25)
ε = 0.00 0.070 0.062 0.052 0.050 0.075 0.049 0.052 0.043
ε = 0.05 0.005 0.008 0.031 0.020 0.048 0.043 0.004 0.017 0.033 0.017 0.046 0.036
ε = 0.10 0.006 0.010 0.048 0.033 0.052 0.045 0.006 0.020 0.045 0.025 0.050 0.038

(25, 100)
ε = 0.00 0.066 0.050 0.060 0.048 0.067 0.041 0.055 0.033
ε = 0.05 0.042 0.038 0.049 0.025 0.067 0.047 0.036 0.078 0.041 0.020 0.058 0.030
ε = 0.10 0.040 0.038 0.062 0.036 0.064 0.046 0.031 0.078 0.057 0.028 0.054 0.033

(100, 100)
ε = 0.00 0.056 0.053 0.051 0.055 0.061 0.048 0.052 0.049
ε = 0.05 0.030 0.026 0.039 0.029 0.054 0.049 0.028 0.039 0.036 0.028 0.049 0.047
ε = 0.10 0.030 0.025 0.046 0.041 0.053 0.049 0.029 0.039 0.049 0.038 0.053 0.045

Weak Spatial dependence (polynomial) Strong Spatial dependence

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

(25, 25)
ε = 0.00 0.069 0.022 0.048 0.033 0.069 0.014 0.055 0.014
ε = 0.05 0.008 0.103 0.034 0.011 0.052 0.028 0.012 0.233 0.039 0.009 0.054 0.014
ε = 0.10 0.009 0.107 0.049 0.013 0.050 0.029 0.011 0.232 0.052 0.010 0.055 0.014

(100, 25)
ε = 0.00 0.072 0.055 0.053 0.048 0.074 0.036 0.047 0.039
ε = 0.05 0.007 0.021 0.041 0.022 0.048 0.038 0.008 0.048 0.041 0.016 0.048 0.039
ε = 0.10 0.009 0.024 0.051 0.029 0.047 0.041 0.009 0.050 0.053 0.021 0.050 0.039

(25, 100)
ε = 0.00 0.066 0.038 0.050 0.024 0.065 0.029 0.055 0.009
ε = 0.05 0.036 0.081 0.042 0.018 0.059 0.021 0.046 0.186 0.042 0.016 0.065 0.008
ε = 0.10 0.033 0.082 0.055 0.027 0.054 0.022 0.037 0.179 0.055 0.021 0.057 0.008

(100, 100)
ε = 0.00 0.063 0.053 0.049 0.047 0.064 0.047 0.051 0.035
ε = 0.05 0.030 0.043 0.040 0.032 0.051 0.046 0.036 0.044 0.044 0.024 0.057 0.034
ε = 0.10 0.031 0.043 0.051 0.040 0.051 0.045 0.032 0.046 0.055 0.033 0.053 0.032
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Table 3.2. Power of the slope homogeneity test DGP1 - break in θ

Presence of heterogeneity σ2
ui ∼ IIDχ

2(2)/2, σ2
zi ∼ IIDχ

2(1);

No time dependence in regressors: ρzi = 0

No spatial dependence Weak Spatial dependence (exponential)

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 0.894 0.650 0.870 0.695 0.834 0.381 0.782 0.327
ε = 0.05 0.360 0.435 0.665 0.167 0.726 0.401 0.213 0.421 0.518 0.102 0.587 0.135
ε = 0.10 0.439 0.492 0.755 0.292 0.759 0.476 0.278 0.466 0.644 0.155 0.639 0.168

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.402 0.108 0.379 0.227 0.349 0.103 0.289 0.103
ε = 0.05 0.180 0.232 0.310 0.075 0.789 0.258 0.133 0.277 0.233 0.054 0.384 0.115
ε = 0.10 0.232 0.270 0.405 0.137 0.526 0318 0.167 0.311 0.344 0.084 0.416 0.134

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Weak Spatial dependence (polynomial) Strong Spatial dependence

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 0.785 0.297 0.739 0.263 0.617 0.098 0.556 0.042
ε = 0.05 0.176 0.399 0.466 0.071 0.530 0.101 0.075 0.420 0.265 0.025 0.328 0.014
ε = 0.10 0.232 0.439 0.573 0.108 0.574 0.130 0.105 0.445 0.384 0.040 0.386 0.018

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.308 0.077 0.255 0.088 0.227 0.034 0.189 0.021
ε = 0.05 0.113 0.273 0.224 0.039 0.349 0.092 0.071 0.335 0.146 0.020 0.235 0.020
ε = 0.10 0.142 0.303 0.309 0.060 0.380 0.108 0.084 0.350 0.212 0.026 0.267 0.023

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 3.3. Power of the slope homogeneity test DGP2 - break in ρ

Presence of heterogeneity σ2
ui ∼ IIDχ

2(2)/2, σ2
zi ∼ IIDχ

2(1);

No time dependence in regressors: ρzi = 0

No spatial dependence Weak Spatial dependence (exponential)

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 0.111 0.061 0.090 0.081 0.148 0.050 0.119 0.063
ε = 0.05 0.018 0.057 0.060 0.017 0.082 0.058 0.020 0.120 0.077 0.016 0.095 0.043
ε = 0.10 0.020 0.059 0.077 0.027 0.084 0.066 0.024 0.130 0.102 0.023 0.098 0.049

(100, 100)
ε = 0.00 0.826 0.826 0.814 0.817 0.967 0.950 0.964 0.951
ε = 0.05 0.617 0.627 0.660 0.639 0.706 0.717 0.871 0.883 0.893 0.858 0.913 0.897
ε = 0.10 0.654 0.665 0.725 0.711 0.738 0.747 0.893 0.900 0.926 0.899 0.929 0.911

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.092 0.040 0.074 0.057 0.110 0.032 0.079 0.041
ε = 0.05 0.020 0.040 0.063 0.013 0.085 0.049 0.024 0.097 0.079 0.014 0.092 0.035
ε = 0.10 0.042 0.042 0.083 0.019 0.088 0.054 0.024 0.099 0.103 0.019 0.094 0.037

(100, 100)
ε = 0.00 0.463 0.376 0.442 0.378 0.675 0.554 0.668 0.552
ε = 0.05 0.453 0.345 0.464 0.375 0.525 0.468 0.679 0.611 0.676 0.568 0.745 0.646
ε = 0.10 0.472 0.376 0.533 0.455 0.543 0.490 0.703 0.647 0.744 0.650 0.768 0.671

Weak Spatial dependence (polynomial) Strong Spatial dependence

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 0.139 0.040 0.106 0.057 0.117 0.021 0.092 0.019
ε = 0.05 0.016 0.137 0.062 0.014 0.088 0.036 0.018 0.264 0.055 0.010 0.076 0.016
ε = 0.10 0.019 0.146 0.089 0.018 0.091 0.039 0.019 0.273 0.078 0.013 0.084 0.017

(100, 100)
ε = 0.00 0.950 0.925 0.938 0.916 0.625 0.550 0.583 0.495
ε = 0.05 0.836 0.843 0.854 0.799 0.886 0.850 0.384 0.412 0.404 0.315 0.472 0.374
ε = 0.10 0.859 0.867 0.897 0.853 0.900 0.868 0.413 0.447 0.502 0.407 0.495 0.395

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.096 0.025 0.070 0.038 0.091 0.015 0.070 0.015
ε = 0.05 0.019 0.116 0.065 0.011 0.087 0.030 0.021 0.243 0.058 0.010 0.078 0.016
ε = 0.10 0.020 0.120 0.087 0.014 0.086 0.031 0.022 0.250 0.077 0.012 0.082 0.016

(100, 100)
ε = 0.00 0.643 0.512 0.609 0.477 0.324 0.205 0.287 0.163
ε = 0.05 0.640 0.570 0.632 0.504 0.708 0.585 0.295 0.234 0.292 0.158 0.354 0.202
ε = 0.10 0.665 0.607 0.715 0.601 0.725 0.616 0.306 0.254 0.361 0.218 0.370 0.220
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Table 4.1. Size of the slope homogeneity test

Individual Heterogeneous time dependence in regressors: ρzi ∼ U [0.05, 0.95]

No spatial dependence Weak Spatial dependence (exponential)

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

(25, 25)
ε = 0.00 0.075 0.053 0.052 0.050 0.072 0.031 0.050 0.035
ε = 0.05 0.005 0.051 0.031 0.020 0.044 0.042 0.007 0.062 0.037 0.013 0.052 0.031
ε = 0.10 0.006 0.050 0.051 0.030 0.045 0.045 0.009 0.064 0.055 0.019 0.051 0.033

(100, 25)
ε = 0.00 0.076 0.067 0.055 0.053 0.072 0.057 0.056 0.051
ε = 0.05 0.005 0.017 0.034 0.028 0.041 0.038 0.006 0.016 0.037 0.022 0.049 0.038
ε = 0.10 0.007 0.019 0.052 0.045 0.049 0.043 0.008 0.019 0.053 0.034 0.049 0.043

(25, 100)
ε = 0.00 0.059 0.051 0.050 0.048 0.060 0.047 0.049 0.042
ε = 0.05 0.025 0.070 0.036 0.029 0.049 0.044 0.031 0.062 0.041 0.022 0.055 0.038
ε = 0.10 0.025 0.067 0.049 0.040 0.050 0.048 0.031 0.062 0.053 0.032 0.051 0.040

(100, 100)
ε = 0.00 0.064 0.061 0.060 0.056 0.057 0.057 0.056 0.055
ε = 0.05 0.029 0.041 0.039 0.040 0.049 0.050 0.025 0.032 0.035 0.031 0.049 0.045
ε = 0.10 0.030 0.041 0.050 0.050 0.054 0.054 0.029 0.035 0.052 0.043 0.051 0.047
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Table 4.2. Power of the slope homogeneity test DGP1- break in θ

Individual Heterogeneous time dependence in regressors: ρzi ∼ U [0.05, 0.95]

No spatial dependence Weak Spatial dependence (exponential)

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 0.997 0.922 0.995 0.916 0.876 0.458 0.844 0.443
ε = 0.05 0.841 0.845 0.970 0.305 0.978 0.528 0.289 0.481 0.602 0.119 0.649 0.184
ε = 0.10 0.891 0.887 0.985 0.576 0.983 0.662 0.365 0.535 0.719 0.181 0.694 0.233

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.747 0.369 0.703 0.402 0.387 0.126 0.342 0.143
ε = 0.05 0.569 0.582 0.629 0.193 0.838 0.480 0.119 0.283 0.285 0.070 0.419 0.167
ε = 0.10 0.637 0.641 0.742 0.345 0.858 0.557 0.227 0.320 0.388 0.101 0.460 0.183

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4.3. Power of the slope homogeneity test DGP2 - break in ρ

Individual Heterogeneous time dependence in regressors: ρzi ∼ U [0.05, 0.95]

No spatial dependence Weak Spatial dependence (exponential)

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 0.616 0.424 0.558 0.424 0.330 0.163 0.277 0.179
ε = 0.05 0.122 0.291 0.354 0.102 0.387 0.190 0.046 0.189 0.158 0.045 0.185 0.088
ε = 0.10 0.164 0.333 0.429 0.179 0.419 0.247 0.063 0.212 0.219 0.065 0.209 0.103

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.281 0.100 0.223 0.090 0.177 0.048 0.137 0.052
ε = 0.05 0.115 0.081 0.266 0.036 0.300 0.063 0.062 0.081 0.156 0.019 0.192 0.041
ε = 0.10 0.141 0.096 0.331 0.059 0.318 0.083 0.073 0.091 0.197 0.027 0.189 0.048

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 0.993 0.984 0.993 0.978
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.988 0.990 0.989 0.995 0.993
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.992 0.995 0.995 0.997 0.995
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Table 4.4. Size of the slope homogeneity test

Time dependence in regressors: ρz

Weak Spatial dependence (polynomial)
ρz = 0.5 ρz = 0.9

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

(25, 25)
ε = 0.00 0.080 0.029 0.053 0.040 0.077 0.027 0.048 0.024
ε = 0.05 0.008 0.087 0.036 0.012 0.053 0.036 0.011 0.100 0.045 0.016 0.052 0.019
ε = 0.10 0.009 0.089 0.056 0.017 0.057 0.037 0.011 0.101 0.059 0.020 0.055 0.021

(100, 25)
ε = 0.00 0.072 0.049 0.046 0.039 0.072 0.049 0.052 0.033
ε = 0.05 0.003 0.016 0.033 0.019 0.045 0.038 0.008 0.031 0.041 0.017 0.043 0.020
ε = 0.10 0.004 0.020 0.048 0.031 0.046 0.038 0.009 0.034 0.053 0.026 0.045 0.024

(25, 100)
ε = 0.00 0.068 0.043 0.052 0.041 0.069 0.048 0.053 0.040
ε = 0.05 0.031 0.076 0.041 0.023 0.049 0.037 0.040 0.091 0.044 0.025 0.056 0.035
ε = 0.10 0.030 0.079 0.052 0.032 0.050 0.040 0.036 0.087 0.058 0.035 0.058 0.036

(100, 100)
ε = 0.00 0.060 0.053 0.049 0.049 0.058 0.057 0.053 0.051
ε = 0.05 0.026 0.035 0.037 0.029 0.047 0.044 0.032 0.045 0.039 0.032 0.048 0.042
ε = 0.10 0.027 0.038 0.044 0.041 0.048 0.046 0.028 0.045 0.048 0.044 0.048 0.045

Strong Spatial dependence
ρz = 0.5 ρz = 0.9

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

(25, 25)
ε = 0.00 0.072 0.016 0.049 0.017 0.070 0.020 0.045 0.007
ε = 0.05 0.011 0.202 0.046 0.010 0.049 0.016 0.018 0.210 0.050 0.013 0.051 0.007
ε = 0.10 0.010 0.205 0.055 0.011 0.049 0.016 0.016 0.210 0.061 0.016 0.050 0.007

(100, 25)
ε = 0.00 0.072 0.030 0.047 0.032 0.071 0.033 0.044 0.024
ε = 0.05 0.008 0.037 0.040 0.013 0.050 0.027 0.013 0.051 0.052 0.014 0.051 0.015
ε = 0.10 0.008 0.041 0.054 0.018 0.051 0.029 0.012 0.054 0.058 0.020 0.051 0.017

(25, 100)
ε = 0.00 0.059 0.033 0.049 0.017 0.061 0.030 0.051 0.013
ε = 0.05 0.040 0.129 0.040 0.017 0.056 0.011 0.054 0.142 0.046 0.020 0.058 0.012
ε = 0.10 0.034 0.130 0.048 0.025 0.052 0.013 0.038 0.136 0.051 0.022 0.052 0.012

(100, 100)
ε = 0.00 0.060 0.042 0.051 0.037 0.060 0.045 0.051 0.029
ε = 0.05 0.033 0.038 0.042 0.024 0.052 0.033 0.046 0.048 0.048 0.026 0.062 0.029
ε = 0.10 0.033 0.039 0.053 0.033 0.051 0.035 0.039 0.047 0.058 0.036 0.058 0.030
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Table 4.5. Power of the slope homogeneity test DGP1 - break in θ

Time dependence in regressors: ρz

Weak Spatial dependence (polynomial)
ρz = 0.5 ρz = 0.9

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 0.796 0.318 0.758 0.329 0.735 0.242 0.681 0.151
ε = 0.05 0.200 0.421 0.485 0.084 0.547 0.161 0.167 0.503 0.402 0.055 0.412 0.045
ε = 0.10 0.260 0.470 0.597 0.129 0.596 0.187 0.216 0.543 0.531 0.087 0.477 0.056

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.338 0.084 0.271 0.107 0.345 0.088 0.259 0.069
ε = 0.05 0.138 0.268 0.228 0.052 0.353 0.125 0.165 0.308 0.271 0.049 0.325 0.061
ε = 0.10 0.167 0.303 0.322 0.074 0.390 0.137 0.194 0.334 0.372 0.072 0.374 0.076

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Strong Spatial dependence
ρz = 0.5 ρz = 0.9

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 0.492 0.073 0.411 0.055 0.411 0.061 0.338 0.020
ε = 0.05 0.055 0.355 0.205 0.022 0.203 0.025 0.062 0.411 0.164 0.026 0.157 0.008
ε = 0.10 0.072 0.383 0.293 0.028 0.264 0.030 0.070 0.435 0.244 0.033 0.200 0.010

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 0.999
ε = 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 0.999

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.194 0.029 0.142 0.027 0.191 0.033 0.139 0.014
ε = 0.05 0.061 0.277 0.127 0.017 0.163 0.024 0.084 0.308 0.149 0.023 0.171 0.013
ε = 0.10 0.065 0.299 0.195 0.022 0.191 0.027 0.090 0.323 0.209 0.028 0.195 0.015

(100, 100)
ε = 0.00 0.996 0.989 0.995 0.984 0.987 0.980 0.985 0.969
ε = 0.05 0.996 0.996 0.988 0.987 0.997 0.996 0.986 0.996 0.968 0.964 0.986 0.986
ε = 0.10 0.997 0.998 0.996 0.994 0.998 0.997 0.988 0.998 0.986 0.986 0.991 0.991
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Table 4.6. Power of the slope homogeneity test DGP2 - break in ρ

Time dependence in regressors: ρz

Weak Spatial dependence (polynomial)
ρz = 0.5 ρz = 0.9

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 0.241 0.095 0.192 0.120 0.364 0.139 0.295 0.095
ε = 0.05 0.031 0.170 0.111 0.029 0.138 0.070 0.052 0.293 0.157 0.046 0.162 0.037
ε = 0.10 0.044 0.190 0.159 0.041 0.153 0.080 0.070 0.320 0.226 0.062 0.198 0.044

(100, 100)
ε = 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.05 0.998 0.998 0.999 0.998 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
ε = 0.10 0.999 0.999 1.000 0.999 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.136 0.037 0.106 0.048 0.202 0.041 0.141 0.029
ε = 0.05 0.044 0.100 0.115 0.015 0.139 0.042 0.088 0.128 0.172 0.020 0.197 0.019
ε = 0.10 0.052 0.111 0.157 0.022 0.147 0.045 0.099 0.141 0.235 0.028 0.219 0.024

(100, 100)
ε = 0.00 0.964 0.918 0.958 0.900 1.000 0.999 1.000 0.997
ε = 0.05 0.967 0.941 0.959 0.937 0.974 0.955 1.000 0.999 0.999 0.999 1.000 0.999
ε = 0.10 0.972 0.953 0.976 0.962 0.981 0.963 1.000 1.000 1.000 1.000 1.000 1.000

Strong Spatial dependence
ρz = 0.5 ρz = 0.9

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 0.161 0.034 0.128 0.029 0.211 0.051 0.162 0.016
ε = 0.05 0.025 0.251 0.079 0.015 0.090 0.020 0.035 0.319 0.089 0.025 0.092 0.007
ε = 0.10 0.028 0.266 0.106 0.018 0.102 0.022 0.038 0.339 0.131 0.031 0.117 0.009

(100, 100)
ε = 0.00 0.871 0.824 0.855 0.799 0.994 0.986 0.993 0.980
ε = 0.05 0.676 0.699 0.703 0.625 0.732 0.663 0.955 0.969 0.951 0.917 0.964 0.923
ε = 0.10 0.710 0.731 0.781 0.699 0.774 0.696 0.965 0.976 0.977 0.947 0.977 0.942

t0 = [0.8T ]
(25, 25)
ε = 0.00 0.110 0.018 0.082 0.019 0.137 0.026 0.099 0.009
ε = 0.05 0.030 0.212 0.089 0.011 0.098 0.018 0.057 0.229 0.117 0.015 0.126 0.006
ε = 0.10 0.033 0.220 0.114 0.013 0.108 0.018 0.060 0.238 0.148 0.019 0.139 0.007

(100, 100)
ε = 0.00 0.531 0.322 0.507 0.291 0.855 0.613 0.839 0.493
ε = 0.05 0.532 0.381 0.503 0.319 0.577 0.359 0.861 0.720 0.816 0.633 0.866 0.600
ε = 0.10 0.551 0.415 0.591 0.390 0.601 0.395 0.870 0.762 0.873 0.720 0.890 0.653


